University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2007

Tamara Munzner
Lighting/Shading lll

Week 7, Mon Feb 26
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

Reading for Today

* FCG Chap 9 Surface Shading
* RB Chap Lighting

Reading for Next Time

» FCG Chap 10 Ray Tracing
- only 10.1-10.7, 10.9, 10.11.2
» FCG Chap 22 Image-Based Rendering

Review: Light Source Placement

* geometry: positions and directions
 standard: world coordinate system

« effect: lights fixed wrt world geometry
« alternative: camera coordinate system

- effect: lights attached to camera (car headlights)

Review: Reflectance
* specular: perfect mirror with no scattering

« gloss: mixed, partial specularity
« diffuse: all directions with equal energy

V4

specular + glossy + diffuse =
reflectance distribution

Review: Reflection Equations

U n
Laitfuse = Ka Digne @ * D ' ; o

n,.
_ shiny
Ispecular - ksIlight (V * I')

_ ﬁ@
) /I/) 7
‘ o /% 2(N(N-L)-L=R

6

Lighting Il

Phong Lighting Model

« combine ambient, diffuse, specular components

#lights

Itotal = ksIambient + EII (kd (n * ll) + ks (V * I‘i)nAlxiny)
i=1

« commonly called Phong lighting
+ once per light
« once per color component

 reminder: normalize your vectors when calculating!

8

Phong Lighting: Intensity Plots

Phong| Pymbient Ppecular Potal

e | b
. @ |\
&

= 60

Blinn-Phong Model

« variation with better physical interpretation
« Jim Blinn, 1977 n
1,(x)=k,(hen) "™ ¢ (x);withh=(1+v)/2

 h: halfway vector
» h must also be explicitly normalized: h / |h]|
« highlight occurs when h near n

* M

Light Source Falloff

* quadratic falloff

« brightness of objects depends on power per
unit area that hits the object

« the power per unit area for a point or spot light
decreases quadratically with distance

Area 4nr?

Light Source Falloff

* non-quadratic falloff
* many systems allow for other falloffs
= allows for faking effect of area light sources
* OpenGL / graphics hardware
« 1,: intensity of light source
« x: object point
- 1: distance of light from x

. 1 ~. 1,(x)= 2 Ly
b Area 4n(2r)? ar +or+c
9 10 1" 12
Lighting Review Lighting in OpenGL Lighting in OpenGL
. . . glLightfv(GL_LIGHTO, GL_AMBIENT, amb_light_rgba);
« lighting models + light source: amount of RGB light emitted e GL LIGHTO G DITUSE A it ey
. ambient « value represents percentage of full intensity glLightfv(GL_LIGHTO0, GL_SPECULAR, spec_light_rgba);
e.g., (1.0,0.5,0.5) elLightfv(GL_LIGHTO, GL_POSITION, position);

+ normals don’t matter - every light source emits ambient, diffuse, and specular glEnable(GL_LIGHTO);
« Lambert/diffuse light g]Mmeria]f‘v(GL FRONT‘GLﬁAMBIENT,m‘\‘qbienLrgba); .

- angle between surface normal and light + materials: amount of RGB light reflected glMaterialv((GL_FRONT, GL_DIFFUSE, diffuse_rgba) Shading

« Phong/specular
« surface normal, light, and viewpoint

« value represents percentage reflected
e.g., (0.0,1.0,0.5)

* interaction: multiply components
« red light (1,0,0) x green surface (0,1,0) = black (0,0,0)

glMaterialfv(GL_FRONT, GL_SPECULAR, specular_rgba);
glMaterialfv(GL_FRONT, GL_SHININESS, n);

+ warning: glMaterial is expensive and tricky
« use cheap and simple glColor when possible
» see OpenGL Pitfall #14 from Kilgard’s list

http://www.opengl.org/resources/features/Kilgard Techniques/oglpitfall/

Lighting vs. Shading

* lighting
 process of computing the luminous intensity

(i.e., outgoing light) at a particular 3-D point,
usually on a surface

 shading
« the process of assigning colors to pixels

AN

- (why the distinction?) /
@

R = [=

Applying lllumination

» we now have an illumination model for a point
on a surface

if surface defined as mesh of polygonal facets,
which points should we use?
« fairly expensive calculation

« several possible answers, each with different
implications for visual quality of result

Applying lllumination

« polygonal/triangular models
- each facet has a constant surface normal

- if light is directional, diffuse reflectance is
constant across the facet

* why?

Flat Shading

« simplest approach calculates illumination at a
single point for each polygon

« obviously inaccurate for smooth surfaces

Flat Shading Approximations
« if an object really is faceted, is

this accurate?
* no!

« for point sources, the direction to
light varies across the facet

«—
L .
- for specular reflectance, direction
—

to eye varies across the facet

Improving Flat Shading

+ what if evaluate Phong lighting model at each pixel
of the polygon?

« better, but result still clearly faceted

« for smoother-looking surfaces
we introduce vertex normals at each
vertex
« usually different from facet normal
« used only for shading

« think of as a better approximation of the real surface
that the polygons approximate

Vertex Normals

* vertex normals may be
« provided with the model
» computed from first principles

= approximated by
averaging the normals
of the facets that
share the vertex

23

Gouraud Shading

* most common approach, and what OpenGL does
« perform Phong lighting at the vertices
« linearly interpolate the resulting colors over faces
« along edges
« along scanlines

edge: mixof ¢, ¢, C

does this eliminate the facets? \

interior: mix of ¢7, ¢2, ¢3

edge: mix of ¢1, ¢3
24

Gouraud Shading Artifacts

- often appears dull, chalky
« lacks accurate specular component

« if included, will be averaged over entire
polygon

c, this vertex shading spread

this interior shading missed! over too much area 2

Gouraud Shading Artifacts

» Mach bands
» eye enhances discontinuity in first derivative
= very disturbing, especially for highlights

Gouraud Shading Artifacts
» Mach bands

Discontinuity in rate
of color change
occurs here

27

Gouraud Shading Artifacts

* perspective transformations
- affine combinations only invariant under affine,
not under perspective transformations

« thus, perspective projection alters the linear
interpolation!

—

Gouraud Shading Artifacts

* perspective transformation problem

« colors slightly “swim” on the surface as objects
move relative to the camera

« usually ignored since often only small difference

« usually smaller than changes from lighting
variations

« to do it right
« either shading in object space
« or correction for perspective foreshortening
« expensive — thus hardly ever done for colors

Phong Shading

« linearly interpolating surface normal across the facet,
applying Phong lighting model at every pixel
« same input as Gouraud shading
 pro: much smoother results
« con: considerably more expensive

+ not the same as Phong lighting
+ common confusion

« Phong lighting: empirical model to calculate illum
a point on a surface

Phong Shading

* linearly interpolate the vertex normals
= compute lighting equations at each pixel
* can use specular component

#lights

Lo = koL o + E Ii(kd (n' li) + k.v(v' ri)"mm~)
N, i=1

remember: normals used in
diffuse and specular terms

discontinuity in normal’s rate of
change harder to detect

31

Phong Shading Difficulties

» computationally expensive

« per-pixel vector normalization and lighting
computation!

« floating point operations required

« lighting after perspective projection

» messes up the angles between vectors
 have to keep eye-space vectors around

* no direct support in pipeline hardware

* but can be simulated with texture mapping

Shading Artifacts: Silhouettes

* polygonal silhouettes remain

Gouraud Phong

Shading Artifacts: Orientation
« interpolation dependent on polygon orientation
* view dependence!

A
560
©

Interpolate between
AB and AD

Rotate -90°
and color
same point

—

B
CQA
D

Interpolate between
CD and AD
3

4

Shading Artifacts: Shared Vertices

I.G
E A F

vertex B shared by two rectangles
on the right, but not by the one on
the left

first portion of the scanline
is interpolated between DE and AC

second portion of the scanline
is interpolated between BC and GH

a large discontinuity could arise

35

Shading Models Summary

« flat shading
« compute Phong lighting once for entire
polygon
* Gouraud shading

» compute Phong lighting at the vertices and
interpolate lighting values across polygon

* Phong shading
« compute averaged vertex normals

« interpolate normals across polygon and
perform Phong lighting across polygon

Shutterbug: Flat Shading

Shutterbug: Gouraud Shading

Shutterbug: Phong Shading

39

 cool-to-warm shading &, =

Non-Photorealistic Shading

I+n-1

LAY !'!

—
-_—

T
.:'\m e

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html

=k, +(1-k)c,

Non-Photorealistic Shading

+ draw silhouettes: if (e-n,)(e-n,) <0, e=edge-eye vector
« draw creases: if (n,-n,) < threshold

e’

i
-]
)
o
B
2
v

u

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html 4

Computing Normals

« per-vertex normals by interpolating per-facet
normals

» OpenGL supports both
« computing normal for a polygon

Computing Normals

« per-vertex normals by interpolating per-facet
normals

» OpenGL supports both
+ computing normal for a polygon
« three points form two vectors

43

Computing Normals

per-vertex normals by interpolating per-facet
normals

* OpenGL supports both
computing normal for a polygon
« three points form two vectors

« cross: normal of plane
gives direction
» normalize to unit length!

(ab)x(c-b) b

+ which side is up?
« convention: points in
counterclockwise
order

Specifying Normals

* OpenGL state machine
« uses last normal specified

« if no normals specified, assumes all identical

* per-vertex normals
gINormal3f(1,1,1);

+ per-face normals
gINormal3f(1,1,1);
glVertex3f(3,4,5);
glVertex3f(10,5,2);

