
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2007

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

Lighting/Shading III

Week 7, Mon Feb 26

2

Reading for Today

• FCG Chap 9 Surface Shading

• RB Chap Lighting

3

Reading for Next Time

• FCG Chap 10 Ray Tracing
• only 10.1-10.7, 10.9, 10.11.2

• FCG Chap 22 Image-Based Rendering

4

Review: Light Source Placement

• geometry: positions and directions
• standard: world coordinate system

• effect: lights fixed wrt world geometry

• alternative: camera coordinate system
• effect: lights attached to camera (car headlights)

5

Review: Reflectance

• specular: perfect mirror with no scattering
• gloss: mixed, partial specularity
• diffuse: all directions with equal energy

 + + =

 specular + glossy + diffuse =
 reflectance distribution

6

Review: Reflection Equations

 Idiffuse = kd Ilight (n • l)
nl

θ

2 (N (N · L)) – L = R
€

Ispecular = ksIlight (v•r)
nshiny

7

Lighting II

8

Phong Lighting Model

• combine ambient, diffuse, specular components

• commonly called Phong lighting
• once per light

• once per color component

• reminder: normalize your vectors when calculating!

€

Itotal = ksIambient + Ii (
i=1

lights

∑ kd (n• li) + ks(v•ri)
nshiny)

9

Phong Lighting: Intensity Plots

10

Blinn-Phong Model

• variation with better physical interpretation
• Jim Blinn, 1977

• h: halfway vector
• h must also be explicitly normalized: h / |h|

• highlight occurs when h near n

ll

nn
vv

hh

€

Iout (x) = ks (h•n)
nshiny • Iin (x);with h = (l + v) /2

11

Light Source Falloff

• quadratic falloff
• brightness of objects depends on power per

unit area that hits the object

• the power per unit area for a point or spot light
decreases quadratically with distance

Area Area 44ππrr22

Area Area 44ππ(2(2r)r)22

12

Light Source Falloff

• non-quadratic falloff
• many systems allow for other falloffs

• allows for faking effect of area light sources

• OpenGL / graphics hardware
• Io: intensity of light source

• x: object point

• r: distance of light from x

02

1
)(I

cbrar
Iin ⋅

++
=x

13

Lighting Review

• lighting models
• ambient

• normals don’t matter

• Lambert/diffuse
• angle between surface normal and light

• Phong/specular
• surface normal, light, and viewpoint

14

Lighting in OpenGL

• light source: amount of RGB light emitted
• value represents percentage of full intensity

e.g., (1.0,0.5,0.5)
• every light source emits ambient, diffuse, and specular

light

• materials: amount of RGB light reflected
• value represents percentage reflected

e.g., (0.0,1.0,0.5)

• interaction: multiply components
• red light (1,0,0) x green surface (0,1,0) = black (0,0,0)

15

Lighting in OpenGL
glLightfv(GL_LIGHT0, GL_AMBIENT, amb_light_rgba);

glLightfv(GL_LIGHT0, GL_DIFFUSE, dif_light_rgba);

glLightfv(GL_LIGHT0, GL_SPECULAR, spec_light_rgba);

glLightfv(GL_LIGHT0, GL_POSITION, position);

glEnable(GL_LIGHT0);

glMaterialfv(GL_FRONT, GL_AMBIENT, ambient_rgba);

glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuse_rgba);

glMaterialfv(GL_FRONT, GL_SPECULAR, specular_rgba);

glMaterialfv(GL_FRONT, GL_SHININESS, n);

• warning: glMaterial is expensive and tricky
• use cheap and simple glColor when possible
• see OpenGL Pitfall #14 from Kilgard’s list
http://www.opengl.org/resources/features/KilgardTechniques/oglpitfall/

16

Shading

17

Lighting vs. Shading

• lighting
• process of computing the luminous intensity

(i.e., outgoing light) at a particular 3-D point,
usually on a surface

• shading
• the process of assigning colors to pixels

• (why the distinction?)

18

Applying Illumination

• we now have an illumination model for a point
on a surface

• if surface defined as mesh of polygonal facets,
which points should we use?
• fairly expensive calculation

• several possible answers, each with different
implications for visual quality of result

19

Applying Illumination

• polygonal/triangular models
• each facet has a constant surface normal

• if light is directional, diffuse reflectance is
constant across the facet

• why?

20

Flat Shading

• simplest approach calculates illumination at a
single point for each polygon

• obviously inaccurate for smooth surfaces

21

Flat Shading Approximations

• if an object really is faceted, is
this accurate?

• no!
• for point sources, the direction to

light varies across the facet

• for specular reflectance, direction
to eye varies across the facet

22

Improving Flat Shading

• what if evaluate Phong lighting model at each pixel
of the polygon?
• better, but result still clearly faceted

• for smoother-looking surfaces
we introduce vertex normals at each
vertex
• usually different from facet normal
• used only for shading
• think of as a better approximation of the real surface

that the polygons approximate

23

Vertex Normals

• vertex normals may be
• provided with the model

• computed from first principles

• approximated by
averaging the normals
of the facets that
share the vertex

24

Gouraud Shading

• most common approach, and what OpenGL does
• perform Phong lighting at the vertices
• linearly interpolate the resulting colors over faces

• along edges
• along scanlines C1

C2

C3

edge: mix of c1, c2

edge: mix of c1, c3
interior: mix of c1, c2, c3

does this eliminate the facets?

25

Gouraud Shading Artifacts

• often appears dull, chalky

• lacks accurate specular component
• if included, will be averaged over entire

polygon

C1

C2

C3

this interior shading missed!

C1

C2

C3

this vertex shading spread
over too much area 26

Gouraud Shading Artifacts

• Mach bands
• eye enhances discontinuity in first derivative

• very disturbing, especially for highlights

27

Gouraud Shading Artifacts

C1

C2

C3

C4

Discontinuity in rate
of color change

occurs here

• Mach bands

28

Gouraud Shading Artifacts

• perspective transformations
• affine combinations only invariant under affine,

not under perspective transformations

• thus, perspective projection alters the linear
interpolation!

Z – into the scene

Image
plane

29

Gouraud Shading Artifacts

• perspective transformation problem
• colors slightly “swim” on the surface as objects

move relative to the camera
• usually ignored since often only small difference

• usually smaller than changes from lighting
variations

• to do it right
• either shading in object space
• or correction for perspective foreshortening
• expensive – thus hardly ever done for colors

30

Phong Shading

• linearly interpolating surface normal across the facet,
applying Phong lighting model at every pixel
• same input as Gouraud shading
• pro: much smoother results
• con: considerably more expensive

• not the same as Phong lighting
• common confusion
• Phong lighting: empirical model to calculate illumination at

a point on a surface

31

Phong Shading

• linearly interpolate the vertex normals
• compute lighting equations at each pixel

• can use specular component

N1

N2

N3

N4

€

Itotal = kaIambient + Ii kd n ⋅ li() + ks v ⋅ ri()nshiny()
i=1

lights

∑
remember: normals used in
diffuse and specular terms

discontinuity in normal’s rate of
change harder to detect

32

Phong Shading Difficulties

• computationally expensive
• per-pixel vector normalization and lighting

computation!

• floating point operations required

• lighting after perspective projection
• messes up the angles between vectors

• have to keep eye-space vectors around

• no direct support in pipeline hardware
• but can be simulated with texture mapping

33

Gouraud Phong

Shading Artifacts: Silhouettes

• polygonal silhouettes remain

34

A

D

C

B

Interpolate between
AB and AD

ι

B

A

D

C

Interpolate between
CD and AD

Rotate -90o

and color
same point

Shading Artifacts: Orientation
• interpolation dependent on polygon orientation

• view dependence!

35

B

A

C

vertex B shared by two rectangles
on the right, but not by the one on
the left

E

D

F

H

G
first portion of the scanline
is interpolated between DE and AC

second portion of the scanline
is interpolated between BC and GH

a large discontinuity could arise

Shading Artifacts: Shared Vertices

36

Shading Models Summary

• flat shading
• compute Phong lighting once for entire

polygon
• Gouraud shading

• compute Phong lighting at the vertices and
interpolate lighting values across polygon

• Phong shading
• compute averaged vertex normals
• interpolate normals across polygon and

perform Phong lighting across polygon

37

Shutterbug: Flat Shading

38

Shutterbug: Gouraud Shading

39

Shutterbug: Phong Shading

40

Non-Photorealistic Shading

• cool-to-warm shading

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html

€

kw =
1+ n ⋅ l
2

,c = kwcw + (1− kw)cc

41

Non-Photorealistic Shading

• draw silhouettes: if , e=edge-eye vector

• draw creases: if

€

(e ⋅n0)(e ⋅n1) ≤ 0

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html

€

(n0 ⋅n1) ≤ threshold

42

Computing Normals

• per-vertex normals by interpolating per-facet
normals
• OpenGL supports both

• computing normal for a polygon

c

b

a

43

Computing Normals

• per-vertex normals by interpolating per-facet
normals
• OpenGL supports both

• computing normal for a polygon
• three points form two vectors

c

b

a

c-b

a-b

44

Computing Normals

• per-vertex normals by interpolating per-facet
normals
• OpenGL supports both

• computing normal for a polygon
• three points form two vectors
• cross: normal of plane

gives direction
• normalize to unit length!

• which side is up?
• convention: points in

counterclockwise
order

c

b

a

c-b

a-b

(a-b) x (c-b)

45

Specifying Normals

• OpenGL state machine
• uses last normal specified
• if no normals specified, assumes all identical

• per-vertex normals
glNormal3f(1,1,1);
glVertex3f(3,4,5);
glNormal3f(1,1,0);
glVertex3f(10,5,2);

• per-face normals
glNormal3f(1,1,1);
glVertex3f(3,4,5);
glVertex3f(10,5,2);

