
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2007

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

Lighting/Shading II

Week 6, Fri Feb 16

2

Correction/News

• Homework 2 was posted Wed
• due Fri Mar 2

• Project 2 out today
• due Mon Mar 5

3

News

• midterms returned

• project 2 out

4

Midterm Grading

5

Project 2: Navigation

• five ways to navigate
• Absolute Rotate/Translate Keyboard
• Absolute Lookat Keyboard

• move wrt global coordinate system

• Relative Rolling Ball Mouse
• spin around with mouse, as discussed in class

• Relative Flying
• Relative Mouselook

• use both mouse and keyboard, move wrt camera

• template: colored ground plane 6

Roll/Pitch/Yaw

7 8

9

Demo

10

Hints: Viewing

• don’t forget to flip y coordinate from mouse
• window system origin upper left

• OpenGL origin lower left

• all viewing transformations belong in
modelview matrix, not projection matrix

11

Hint: Incremental Relative Motion

• motion is wrt current camera coords
• maintaining cumulative angles wrt world coords would be

difficult
• computation in coord system used to draw previous frame

(what you see!) is simple
• at time k, want p' = IkIk-1….I5I4I3I2I1Cp
• thus you want to premultiply: p’=ICp
• but postmultiplying by new matrix gives p’=CIp

• OpenGL modelview matrix has the info! sneaky trick:
• dump out modelview matrix with glGetDoublev()
• wipe the stack with glIdentity()
• apply incremental update matrix
• apply current camera coord matrix

• be careful to leave the modelview matrix unchanged after your
display call (using push/pop)

12

Caution: OpenGL Matrix Storage

• OpenGL internal matrix storage is
columnwise, not rowwise
a e i m
b f j n
c g k o
d h l p

• opposite of standard C/C++/Java convention

• possibly confusing if you look at the matrix
from glGetDoublev()!

13

Reading for Wed/Today/Next Time

• FCG Chap 9 Surface Shading

• RB Chap Lighting

14

Review: Computing Barycentric
Coordinates

• 2D triangle area
• half of parallelogram area

• from cross product

A = ΑP1 +ΑP2 +ΑP3

α = ΑP1 /A

β = ΑP2 /A

γ = ΑP3 /A

3P
A

1P

3P

2P

P

((α,β,γα,β,γ) =) =
(1,0,0)(1,0,0)

((α,β,γα,β,γ) =) =
(0,1,0)(0,1,0)

((α,β,γα,β,γ) =) =
(0,0,1)(0,0,1) 2P

A

1P
A

weighted combination of three points
[demo]

15

Review: Light Sources

• directional/parallel lights
• point at infinity: (x,y,z,0)T

• point lights
• finite position: (x,y,z,1)T

• spotlights
• position, direction, angle

• ambient lights

16

Lighting I

17

Light Source Placement

• geometry: positions and directions
• standard: world coordinate system

• effect: lights fixed wrt world geometry
• demo:

http://www.xmission.com/~nate/tutors.html
• alternative: camera coordinate system

• effect: lights attached to camera (car headlights)
• points and directions undergo normal

model/view transformation
• illumination calculations: camera coords

18

Types of Reflection

• specular (a.k.a. mirror or regular) reflection causes
light to propagate without scattering.

• diffuse reflection sends light in all directions with
equal energy.

• mixed reflection is a weighted
combination of specular and diffuse.

19

Types of Reflection

• retro-reflection occurs when incident energy
reflects in directions close to the incident
direction, for a wide range of incident
directions.

• gloss is the property of a material surface
that involves mixed reflection and is
responsible for the mirror like appearance of
rough surfaces.

20

Reflectance Distribution Model

• most surfaces exhibit complex reflectances
• vary with incident and reflected directions.
• model with combination

 + + =

 specular + glossy + diffuse =
 reflectance distribution

21

Surface Roughness

• at a microscopic scale, all
real surfaces are rough

• cast shadows on
themselves

• “mask” reflected light:
shadow shadow

Masked Light

22

Surface Roughness

• notice another effect of roughness:
• each “microfacet” is treated as a perfect mirror.

• incident light reflected in different directions by
different facets.

• end result is mixed reflectance.
• smoother surfaces are more specular or glossy.

• random distribution of facet normals results in diffuse
reflectance.

23

Physics of Diffuse Reflection

• ideal diffuse reflection
• very rough surface at the microscopic level

• real-world example: chalk

• microscopic variations mean incoming ray of
light equally likely to be reflected in any
direction over the hemisphere

• what does the reflected intensity depend on?

24

Lambert’s Cosine Law

• ideal diffuse surface reflection
the energy reflected by a small portion of a surface from a
light source in a given direction is proportional to the cosine
of the angle between that direction and the surface normal

• reflected intensity

• independent of viewing direction

• depends on surface orientation wrt light

• often called Lambertian surfaces

25

Lambert’s Law

intuitively: cross-sectional area of
the “beam” intersecting an element
of surface area is smaller for greater
angles with the normal.

26

Computing Diffuse Reflection

• depends on angle of incidence: angle between surface
normal and incoming light
• Idiffuse = kd Ilight cos θ

• in practice use vector arithmetic
• Idiffuse = kd Ilight (n • l)

• always normalize vectors used in lighting!!!
• n, l should be unit vectors

• scalar (B/W intensity) or 3-tuple or 4-tuple (color)
• kd: diffuse coefficient, surface color
• Ilight: incoming light intensity
• Idiffuse: outgoing light intensity (for diffuse reflection)

nl

θ

27

Diffuse Lighting Examples

• Lambertian sphere from several lighting
angles:

• need only consider angles from 0° to 90°
• [demo] Brown exploratory on reflection
• http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/

exploratories/applets/reflection2D/reflection_2d_java_browser.html

28

diffuse diffuse

plus

specular

Specular Reflection

• shiny surfaces exhibit specular reflection
• polished metal

• glossy car finish

• specular highlight
• bright spot from light shining on a specular surface

• view dependent
• highlight position is function of the viewer’s position

29

Specular Highlights

Michiel van de Panne 30

Physics of Specular Reflection

• at the microscopic level a specular reflecting
surface is very smooth

• thus rays of light are likely to bounce off the
microgeometry in a mirror-like fashion

• the smoother the surface, the closer it
becomes to a perfect mirror

31

Optics of Reflection

• reflection follows Snell’s Law:
• incoming ray and reflected ray lie in a plane

with the surface normal

• angle the reflected ray forms with surface
normal equals angle formed by incoming ray
and surface normal

θ(l)ight = θ(r)eflection

32

Non-Ideal Specular Reflectance

• Snell’s law applies to perfect mirror-like surfaces,
but aside from mirrors (and chrome) few surfaces
exhibit perfect specularity

• how can we capture the “softer” reflections of
surface that are glossy, not mirror-like?

• one option: model the microgeometry of the
surface and explicitly bounce rays off of it

• or…

33

Empirical Approximation

• we expect most reflected light to travel in
direction predicted by Snell’s Law

• but because of microscopic surface
variations, some light may be reflected in a
direction slightly off the ideal reflected ray

• as angle from ideal reflected ray increases,
we expect less light to be reflected

34

Empirical Approximation

• angular falloff

• how might we model this falloff?
35

• nshiny : purely empirical
constant, varies rate of falloff

• ks: specular coefficient,
highlight color

• no physical basis, works
ok in practice

v

€

Ispecular = ksIlight (cosφ)
nshiny

Phong Lighting

• most common lighting model in computer
graphics

• (Phong Bui-Tuong, 1975)

36

Phong Lighting: The nshiny Term

• Phong reflectance term drops off with divergence of viewing angle from
ideal reflected ray

• what does this term control, visually?

Viewing angle – reflected angle

37

Phong Examples

varying l

varying nshiny

38

Calculating Phong Lighting

• compute cosine term of Phong lighting with vectors

• v: unit vector towards viewer/eye
• r: ideal reflectance direction (unit vector)
• ks: specular component

• highlight color
• Ilight: incoming light intensity

• how to efficiently calculate r ?

v

€

Ispecular = ksIlight (v•r)
nshiny

39

Calculating R Vector

P = N cos θ = projection of L onto N

L
P

N

θ

40

Calculating R Vector

P = N cos θ = projection of L onto N

P = N (N · L)

L
P

N

θ

41

Calculating R Vector

P = N cos θ |L| |N| projection of L onto N

P = N cos θ L, N are unit length

P = N (N · L)

L
P

N

θ

42

Calculating R Vector

P = N cos θ |L| |N| projection of L onto N

P = N cos θ L, N are unit length

P = N (N · L)

2 P = R + L

2 P – L = R

2 (N (N · L)) - L = R L
P

P

R

L

N

θ

43

Phong Lighting Model

• combine ambient, diffuse, specular components

• commonly called Phong lighting
• once per light

• once per color component

• reminder: normalize your vectors when calculating!

€

Itotal = ksIambient + Ii (
i=1

lights

∑ kd (n• li) + ks(v•ri)
nshiny)

44

Phong Lighting: Intensity Plots

45

Blinn-Phong Model

• variation with better physical interpretation
• Jim Blinn, 1977

• h: halfway vector
• h must also be explicitly normalized: h / |h|

• highlight occurs when h near n

ll

nn
vv

hh

€

Iout (x) = ks (h•n)
nshiny • Iin (x);with h = (l + v) /2

46

Light Source Falloff

• quadratic falloff
• brightness of objects depends on power per

unit area that hits the object

• the power per unit area for a point or spot light
decreases quadratically with distance

Area Area 44ππrr22

Area Area 44ππ(2(2r)r)22

47

Light Source Falloff

• non-quadratic falloff
• many systems allow for other falloffs

• allows for faking effect of area light sources

• OpenGL / graphics hardware
• Io: intensity of light source

• x: object point

• r: distance of light from x

02

1
)(I

cbrar
Iin ⋅

++
=x

48

Lighting Review

• lighting models
• ambient

• normals don’t matter

• Lambert/diffuse
• angle between surface normal and light

• Phong/specular
• surface normal, light, and viewpoint

49

Lighting in OpenGL

• light source: amount of RGB light emitted
• value represents percentage of full intensity

e.g., (1.0,0.5,0.5)
• every light source emits ambient, diffuse, and specular

light

• materials: amount of RGB light reflected
• value represents percentage reflected

e.g., (0.0,1.0,0.5)

• interaction: multiply components
• red light (1,0,0) x green surface (0,1,0) = black (0,0,0)

50

Lighting in OpenGL
glLightfv(GL_LIGHT0, GL_AMBIENT, amb_light_rgba);

glLightfv(GL_LIGHT0, GL_DIFFUSE, dif_light_rgba);

glLightfv(GL_LIGHT0, GL_SPECULAR, spec_light_rgba);

glLightfv(GL_LIGHT0, GL_POSITION, position);

glEnable(GL_LIGHT0);

glMaterialfv(GL_FRONT, GL_AMBIENT, ambient_rgba);

glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuse_rgba);

glMaterialfv(GL_FRONT, GL_SPECULAR, specular_rgba);

glMaterialfv(GL_FRONT, GL_SHININESS, n);

• warning: glMaterial is expensive and tricky
• use cheap and simple glColor when possible
• see OpenGL Pitfall #14 from Kilgard’s list
http://www.opengl.org/resources/features/KilgardTechniques/oglpitfall/

