Reading for Today \& Next 2 Lectures

Review: Scan Conversion

FCG Chap 9 Surface Shading
RB Chap Lighting
convert continuous rendering primitives into discrete fragments/pixels

- given vertices in DCS, fill in the pixels
display coordinates required to provide scale for

Correction: Making It Fast: Reuse Computation
midpoint: if $f(x+1, y+.5)<0$ then $y=y+1$

- on previous step evaluated $f(x-1, y-.5)$ or $f(x-1, y+5$
$f(x+1, y)=f(x, y)+\left(y_{0}-y_{1}\right)$
$f(x+1, y+1)=f(x, y)+\left(y_{0}-y_{1}\right)+\left(x_{1}-x_{0}\right)$
$\stackrel{y}{\mathrm{y}=\mathrm{y} 0}=\mathrm{f}\left(\mathrm{x}_{\mathrm{ol}}, \mathrm{y}^{0+.5)}\right.$
for ($\mathrm{x}=\mathrm{x0}$; $\mathrm{x}<=\mathrm{x} 1 ; \mathrm{x++}$) \{
draw (x, y);
if $(d<0)$ the
if $(\mathrm{d}<0)$ then
$\mathrm{y}=\mathrm{y}+1 ;$
$\mathrm{d}=\mathrm{d}+(\mathrm{x} 1-\mathrm{x} 0)+(\mathrm{y} 0-\mathrm{y} 1$
$\mathrm{d}=\mathrm{d}+$
else $\}$
$d=d+\left(y^{0}-y^{1}\right)$

Lighting/Shading

Homework 2 out today

- Project 2 out Friday
- due Mon Feb 26 instead of Fri Feb 23

Week 6, Wed Feb 14
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

Review/Correction: Midpoint Algorithm

- we're moving horizontally along x direction (first octant) - only two choices: draw at current y value, or move up vertically
to $y+1$? y+1

- check if midpoint between two possible pixel centers above or

- top pixel: $(x+1, y+1)$ - bottom pixel: $(x+1$,
midpoint: $(x+1, y+.5)$
- check if midpoint above
- below: pick top pixel
above: pick bottom pixel
key idea behind Bresenham
reuse computation from previous step integer arithmetic by doubling values

Review: Triangulating Polygons

- simple convex polygons
- trivial to break into triangles
- pick one vertex, draw lines to all others

not immediately adjacent
- OpenGL supports automatically
- gIBegin(GL_POLYGON) ... glEnd()
- concave or non-simple polygons
- more effort to break into triangles
- simple approach may not work
- OpenGL can support at extra cost - gluNewTess(), gluTessCallback()

- simple algorithm
- draw edges of polygon
- use flood-fill to draw interior

Review: Bilinear Interpolation

- interpolate quantity along L and R edges as a function of y
- then interpolate quantity as a function of x

Review: Barycentric Coordinates

Review: Scanline Algorithms

- scanline: a line of pixels in an image - set pixels inside polygon boundary along horizontal lines one pixel apart vertically - parity test: draw pixel if edgecount is odd - optimization: only loop over axis-aligned bounding box of $\mathrm{xmin} / \mathrm{xmax}, \mathrm{ymin} / \mathrm{ymax}$

non-orthogonal coordinate system based on
triangle itself
- origin: P_{1}, basis vectors: $\left(P_{2}-P_{1}\right)$ and $\left(P_{3}-P_{1}\right)$
$P=P_{1}+\beta\left(P_{2}-P_{1}\right)+\gamma\left(P_{3}-P_{1}\right)$
$P=(1-\beta-\gamma) P_{1}+\beta P_{2}+\gamma P_{3}$
$P=\alpha P_{1}+\beta P_{2}+\gamma P_{3}$
$\alpha+\beta+\gamma=1$
$0<=\alpha, \beta, \gamma<=1$

Interpolation

Computing Barycentric Coordinates

Deriving Barycentric From Bilinear

from bilinear interpolation of point P on scanline

$$
\begin{array}{ll}
\mathbf{P}_{1} & P_{L}=P_{2}+\frac{d_{1}}{d_{1}+d_{2}}\left(P_{3}-P_{2}\right) \\
& =\left(1-\frac{d_{1}}{d_{1}+d_{2}}\right) P_{2}+\frac{d_{1}}{d_{1}+d_{2}} P_{3}= \\
& =\frac{d_{2}}{d_{1}+d_{2}} P_{2}+\frac{d_{1}}{d_{1}+d_{2}} P_{3}
\end{array}
$$

Deriving Barycentric From Bilineaer

 - similarly$$
\begin{array}{ll}
\mathbf{P}_{\mathbf{P}_{1}} & P_{R}=P_{2}+\frac{b_{1}}{b_{1}+b_{2}}\left(P_{1}-P_{2}\right) \\
=\left(1-\frac{b_{1}}{b_{1}+b_{2}}\right) P_{2}+\frac{b_{1}}{\mathbf{P}_{1}+b_{2}} P_{1}= \\
=\mathbf{P}_{\mathbf{P}_{\mathbf{R}}} & =\frac{b_{2}}{b_{1}+b_{2}} P_{2}+\frac{b_{1}}{b_{1}+b_{2}} P_{1}
\end{array}
$$

Deriving Barycentric From Bilinear

- combining

$$
\begin{gathered}
P=\frac{c_{2}}{c_{1}+c_{2}} \cdot P_{L}+\frac{c_{1}}{c_{1}+c_{2}} \cdot P_{R} \\
P_{L}=\frac{d_{2}}{d_{1}+d_{2}} P_{2}+\frac{d_{1}}{d_{1}+d_{2}} P_{3} \\
P_{R}=\frac{b_{2}}{b_{1}+b_{2}} P_{2}+\frac{b_{1}}{b_{1}+b_{2}} P_{1}
\end{gathered}
$$

$P=\frac{c_{2}}{c_{1}+c_{2}}\left(\frac{d_{2}}{d_{1}+d_{2}} P_{2}+\frac{d_{1}}{d_{1}+d_{2}} P_{3}\right)+\frac{c_{1}}{c_{1}+c_{2}}\left(\frac{b_{2}}{b_{1}+b_{2}} P_{2}+\frac{b_{1}}{b_{1}+b_{2}} P_{1}\right)$

Deriving Barycentric From Bilinear

- thus $P=\alpha P_{1}+\beta P_{2}+\gamma P_{3}$ with

$$
\begin{aligned}
& \alpha=\frac{c_{1}}{c_{1}+c_{2}} \frac{b_{1}}{b_{1}+b_{2}} \\
& \beta=\frac{c_{2}}{c_{1}+c_{2}} \frac{d_{2}}{d_{1}+d_{2}}+\frac{c_{1}}{c_{1}+c_{2}} \frac{b_{2}}{b_{1}+b_{2}} \\
& \gamma=\frac{c_{2}}{c_{1}+c_{2}} \frac{d_{1}}{d_{1}+d_{2}}
\end{aligned}
$$

- can verify barycentric properties

$$
\alpha+\beta+\gamma=1, \quad 0 \leq \alpha, \beta, \gamma \leq 1
$$

Goal

- simulate interaction of light and objects
- fast: fake it!
- approximate the look, ignore real physics
- get the physics (more) right
- BRDFs: Bidirectional Reflection Distribution Functions
- local model: interaction of each object with light
- global model: interaction of objects with each other

Photorealistic Illumination

-transport of energy from light sources to surfaces \& points -global includes direct and indirect illumination - more later

Rendering Pipeline

Illumination in the Pipeline

- local illumination
- only models light arriving directly from light source
- no interreflections or shadows
- can be added through tricks, multiple rendering passes
- light sources
- simple shapes
- materials
- simple, non-physical reflection models

Projective Rendering Pipeline

ocs - object/model coordinate system C2N CCS
WCS - world coordinate system $\quad \begin{gathered}\text { perspective } \\ \text { divide }\end{gathered}$ normalized

VCS- viewing/camera/eye coordinate	N2D	device
system		

CCS - clipping coordinter
NDCS- normalized device coordinat

Light Sources

- types of light sources

- glLightfv (GL_LITGHTo, GL_Position, 1 ight[])
- directional/parallel lights
- real-life example: sun

- infinitely far source: homogeneous coord w=0 - point lights
- same intensity in all directions
- spot lights
- limited set of directions: point+direction+cutoff angle

Light Sources

- area lights
- light sources with a finite area
- more realistic model of many light sources
- not available with projective rendering pipeline (i.e., not available with OpenGL)

Light Sources

- ambient lights
- no identifiable source or direction
- hack for replacing true global illumination - (diffuse interreflection: light bouncing off from other objects)

Diffuse Interreflection

Ambient Light Sources

- scene lit only with an ambient light source

$\begin{array}{l}\text { Light Position } \\ \text { Not Important }\end{array}$
$\begin{array}{l}\text { Viewer Position } \\ \text { Not Important }\end{array}$
$\begin{array}{l}\text { Surface Angle } \\ \text { Not Important }\end{array}$

Directional Light Sources

- scene lit with directional and ambient ligh

Point Light Sources

- scene lit with ambient and point light source

Light Sources

- geometry: positions and directions - standard: world coordinate system - effect: lights fixed wrt world geometry - demo:
http://www.xmission.com/~nate/tutors.html
- alternative: camera coordinate system
- effect: lights attached to camera (car headlights)
- points and directions undergo normal model/view transformation
- illumination calculations: camera coords

Types of Reflection

- specular (a.k.a. mirror or regular) reflection causes light to propagate without scattering
diffuse reflection sends light in all directions with equal energy.
- mixed reflection is a weighted combination of specular and diffuse.

Specular Highlights

Surface Roughness

- notice another effect of roughness:
- each "microfacet" is treated as a perfect mirror
- incident light reflected in different directions by different facets.
end result is mixed reflectance.
- smoother surfaces are more specular or glossy - random distribution of facet normals results in diffuse reflectance

Types of Reflection

- retro-reflection occurs when incident energy reflects in directions close to the incident direction, for a wide range of incident directions.
- gloss is the property of a material surface that involves mixed reflection and is responsible for the mirror like appearance of rough surfaces.
${ }^{33}$

Reflectance Distribution Model

- most surfaces exhibit complex reflectances - vary with incident and reflected directions - model with combination

specular + glossy + diffuse $=$
reflectance distribution

Surface Roughness

- at a microscopic scale, all real surfaces are rough

- cast shadows on themselves
- "mask" reflected light

Lambert's Cosine Law

- ideal diffuse surface reflection
the energy reflected by a small portion of a surface from a light source in a ben direction is proportion to the cosin of the angle between that direction and the surface normal
- reflected intensity
- independent of viewing direction
- depends on surface orientation wrt light
- often called Lambertian surfaces

Lambert's Law

intuitively: cross-sectional area of the "beam" intersecting an element of surface area is smaller for greater angles with the normal

Computing Diffuse Reflection

depends on angle of incidence: angle between surface normal and incoming light

- $I_{\text {diffuse }}=k_{d} I_{\text {light }} \cos \theta$
- in practice use vector arithmetic $I_{\text {diffuse }}=\mathrm{k}_{\mathrm{d}} \mathrm{I}_{\text {light }}(\mathbf{n} \cdot \mathbf{1})$

- always normalize vectors used in lighting!!! n, I should be unit vectors
- scalar (B/W intensity) or 3-tuple or 4-tuple (color k_{d} : diffuse coefficient, surface color
- I igne incom
- Idiftuse: outgoing light intensity (for diffuse reflection)

Diffuse Lighting Examples

- Lambertian sphere from several lighting angles:

- why?
- demo: Brown exploratory on reflection

