University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2007

Tamara Munzner
Transformations V

Week 3, Wed Jan 24
http://www.ugrad.cs.ubc.ca/~cs314/Vian2007




Reading for Next 3 Lectures

FCG Chapter 7 Viewing
FCG Section 6.3.1 Windowing Transforms

RB rest of Chap Viewing
RB rest of App Homogeneous Coords



Review: Transformation Hierarchies

 transforms apply to graph nodes beneath them
 design structure so that object doesn't fall apart

* Instancing

oy .\R:

Hea anNeckLeg gthd\Fnot

S i

Head Neck leg Foot




Review: Matrix Stacks

* OpenGL matrix calls postmultiply matrix M onto current
matrix P, overwrite it to be PM

or can save intermediate states with stack

no need to compute inverse matrices all the time
modularize changes to pipeline state

avoids accumulation of numerical errors

D = C scale(2,2,2) trans(1,0,0)

C
D DrawSquare()
C C C C glPushMatrix()
IScale3f(2,2,2
B B B B glScale3f(2,2,2)
glTranslate3f(1,0,0)
A A A A DrawSquare()

glPopMatrix()



Assignments



Assignments

* project 1
» out today, due 5:59pm Fri Feb 2
* you should start very soon!

* build armadillo out of cubes and 4x4 matrices
* think cartoon, not beauty

 template code gives you program shell, Makefile
* http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007/p1.tar.gz

* written homework 1
 out today, due 3pm Fri Feb 2
* theoretical side of material




Project 1 Advice

* do not model everything first and only then
worry about animating

* Interleave modelling, animation
» add body part, then animate it
» discover if on wrong track sooner
» depenencies: can’'t get anim credit if no model
* use middle body as scene graph root
» check from all camera angles



Project 1 Advice

* finish all required parts before
» going for extra credit
» playing with lighting or viewing
* ok to use glRotate, glTranslate, glScale
* ok to use glutSolidCube, or build your own

» where to put origin? your choice
- center of object, range - .5to +.5
* corner of object, range 0 to 1



Project 1 Advice

* visual debugging
» color cube faces differently

» colored lines sticking out of glutSolidCube
faces

» thinking about transformations
* move physical objects around

* play with demos
* Brown scenegraph applets



Project 1 Advice

* first: jJump cut from old to new position
» all change happens in single frame

 do last: add smooth transition
» change happens gradually over 30 frames
* key click triggers animation loop
» explicitly redraw 30 times

* linear interpolation:
each time, param += (new-o0ld)/30

« example: 5-frame transition

10



Tail Wag Frame 0

11



Tail Wag Frame 1

12



Tail Wag Frame 2

13



Tail Wag Frame 3

14



Tail Wag Frame 4

15



Tail Wag Frame 5

16



Project 1 Advice

* transitions

- safe to linearly interpolate parameters for
glRotate/glTranslate/glScale

» do not interpolate individual elements of 4x4
matrix!

17



Style

you can lose up to 15% for poor style
most critical: reasonable structure

* yes: parametrized functions

* no: cut-and-paste with slight changes
reasonable names (variables, functions)
adequate commenting

* rule of thumb: what if you had to fix a bug two
years from now?

global variables are indeed acceptable

18



Version Control

bad idea: just keep changing same file

save off versions often

- after got one thing to work, before you try starting
something else

» just before you do something drastic
how?
* not good: commenting out big blocks of code

* a little better: save off file under new name
» p1.almostworks.cpp, p1.fixedbug.cpp

much better:use version control software
» strongly recommended

19



Version Control Software

easy to browse previous work
easy to revert if needed

for maximum benefit, use meaningful comments to
describe what you did

» “started on tail”, “fixed head breakoff bug”, “leg code
compiles but doesn’t run”

useful when you're working alone
critical when you're working together

many choices: RCS, CVS, subversion

* RCS is a good place to start

 easy to use, installed on lab machines
20



RCS Basics

setup, just do once in a directory
« mkdir RCS

checkin
* ci—u p1.cpp
checkout
* co—lpl.cpp
see history
* rcs log p1.cpp
compare to previous version
* rcsdiff p1.cpp
checkout old version to stdout
 co—p1.5pl.cpp > pl.cpp.d5

21



Graphical File Comparison

* installed on lab machines

- xfdiff4 (side by side comparison)

» xwdiff (in-place, with crossouts)
* Windows: windiff

* http://keithdevens.com/files/windiff
* Macs: FileMerge

* in /Developer/Applications/Utilities

22



Display Lists

23



Display Lists

« precompile/cache block of OpenGL code for reuse
* usually more efficient than immediate mode
 exact optimizations depend on driver
+ good for multiple instances of same object
 but cannot change contents, not parametrizable
 good for static objects redrawn often
- display lists persist across multiple frames

* interactive graphics: objects redrawn every frame from
new viewpoint from moving camera

» can be nested hierarchically

* snowman example
http://www.lighthouse3d.com/opengl/displaylists

24



One Snowman . R .

void drawSnowMan() {

glColor31(1.01, 1.0f, 1.0f);

/l Draw Body
glTranslatef(0.0f ,0.75f, 0.01);
glutSolidSphere(0.751,20,20);

/l Draw Head
glTranslatef(0.01, 1.0f, 0.0f);
glutSolidSphere(0.251,20,20);

/l Draw Eyes

glPushMatrix();
glColor3£(0.01,0.01,0.01);
glTranslatef(0.05f, 0.10f, 0.18f);
glutSolidSphere(0.051,10,10);
glTranslatef(-0.1f, 0.0f, 0.01);
glutSolidSphere(0.051,10,10);
glPopMatrix();

// Draw Nose

glColor3£(1.0f, 0.5f , 0.5f);
glRotatef(0.01,1.01f, 0.0f, 0.01);
glutSolidCone(0.081,0.51,10,2);

h

25



Instantiate Many Snowmen

// Draw 36 Snowmen

for(inti=-3;i<3; i++)

for(int j=-3; j <3; j++) {
glPushMatrix();

glTranslatef(i*10.0, 0, j * 10.0);

// Call the function to draw a snowman

drawSnowMan();

glPopMatrix();

36K polygons, 55 FPS o



Making Display Lists

GLuint createDL() {

GLuint snowManDL;

/I Create the id for the list

snowManDL = glGenLists(1);
gINewList(snowManDL,GL_COMPILE);
drawSnowMan();

glEndList();

return(snowManDL); }

snowmanDL = createDL();
for(int i =-3; i < 3; i++)
for(int j=-3; j <3; j++) {
glPushMatrix();
glTranslatef(i*10.0, 0, j * 10.0);

glCallList(snowmanDL);
glPopMatrix(); } 36K polygons, 153 FPS =



Transforming Normals

28



Transforming Geometric Objects

* lines, polygons made up of vertices

* just transform the vertices, interpolate
between

* does this work for everything? no!

29



Computing Normals

* polygon:
POlyg P

N
& N =(P, - P)x(P,~ )
P

1 P
* assume vertices orde2red CCW when viewed
from visible side of polygon
* normal for a vertex
* specify polygon orientation
* used for lighting

 supplied by model (i.e., sphere),
or computed from neighboring polygons

30



Transforming Normals

what is a normal?
« a direction
* homogeneous coordinates: w=0 means direction
 often normalized to unit length
* VvS. points/vectors that are object vertex locations
what are normals for?

- specify orientation of polygonal face
- used when computing lighting

so if points transformed by matrix M, can we just transform
normal vector by M too?

31



Transforming Normals

X' [my, my, my T
| My My My T
| 1
_O 0 0 0 1

S
|

w§

§

w§
<

S N = =

translations OK: w=0 means unaffected
rotations OK
uniform scaling OK

these all maintain direction

32



Transforming Normals

* nonuniform scaling does not work
» x-y=0 plane
* line x=y

* normal: [1,-1,0]
» direction of line x=-y
* (Ignore normalization for now)

33



Transforming Normals

 apply nonuniform scale: stretch along x by 2
* new plane x = 2y

 transformed normal: [2,-1,0]

21 [2 0 0 Of1]

-1l [0 1 0 0f-1
ol 10 o 1 o0
0] [0 0 0 1]0]

* normal is direction of line x = -2y or x+2y=0
* not perpendicular to plane!
 should be direction of 2x = -y

34



Planes and Normals

* plane is all points perpendicular to normal
- N-P=0 (with dot product)
.+ N'P =0 (matrix multiply requires transpose)

N=||P=

o S Q)

L
Y
<
W

d
- explicit form: plane = ax+ by +cz+d

35



Finding Correct Normal Transform

* transform a plane

'
P P = MP given M,
N > N'= ON  what should Q be?
N'T P' = O stay perpendicular
(QN)T (MP) = O substitute from above
Il _ (AB)T =BTA"
N O MP=0
QTM=] N'P=0ifQ™™M =1
_1\T thus the normal to any surface can be
Q = (M ) transformed by the inverse transpose of the

modelling transformation
36



