University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2007

Tamara Munzner
Transformations IV

Week 3, Mon Jan 22
http://www.ugrad.cs.ubc.ca/~cs314/Vian2007

Readings for Jan 15-22

FCG Chap 6 Transformation Matrices
* except 6.1.6, 6.3.1

FCG Sect 13.3 Scene Graphs
RB Chap Viewing

* Viewing and Modeling Transforms until Viewing
Transformations

- Examples of Composing Several Transformations
through Building an Articulated Robot Arm

RB Appendix Homogeneous Coordinates and
Transformation Matrices

* until Perspective Projection
RB Chap Display Lists

Review: Interpreting Transformations

p'=TRp

translate by (-1,0)

L,

(2,1)
(4]

right to left: moving object

(1,1)

,[intuitive?

left to right: changing coordinate system

(1,1)

,[OpenGL

* same relative position between object and
basis vectors

Correction/More: ArbitraAry Rotation

A (by. by, b7, 1)

Y (aX7 ay7 aZ7 1)

(Cy Cy» Cz: 1)
* arbitrary rotation: change of basis
* given two orthonormal coordinate systems XYZ and ABC
* A’s location in the XYZ coordinate system is (ay, Ay, az, 1), ...

* transformation from one to the other is matrix R whose

columns are 4,B,C: r, p 011
a, b, ¢, 0]|0

R(X)=| " y y _ _

=10 b ¢ o] =@anaD=4
0 0 1|1

Transformation Hierarchies

Transformation Hierarchies

* scene may have a hierarchy of coordinate
systems

» stores matrix at each level with incremental
transform from parent’s coordinate system

* scene graph

Transformation Hierarchy Example 1

(Liieg> (Ruteg) ((Liarm> (Riam

trans(0.30,0,0) rot(z,0)

Transformation Hierarchies

* hierarchies don't fall apart when changed
* transforms apply to graph nodes beneath

Demo: Brown Applets

http://www.cs.brown.edu/exploratories/
freeSoftware/catalogs/scenegraphs.html

Transformation Hierarchy Example 2

» draw same 3D data with different
transformations: instancing

10

Matrix Stacks

 challenge of avoiding unnecessary
computation

* using inverse to return to origin
« computing incremental T, -=> T,

.t
o

.

.
ot
* .
.
o e
......
.........

o
......

World coordinates

—>
Object coordinates

A

11

glPushMatrix()
glPopMatrix()

W
> (0[O | O

Matrix Stacks

/ D = C scale(2,2,2) trans(1,0,0)

> | 0| 0O |0

DrawSquare()
glPushMatrix()
glScale3f(2,2,2)
glTranslate3f(1,0,0)
DrawSquare()
glPopMatrix()

12

Modularization

» drawing a scaled square
* push/pop ensures no coord system change

void drawBlock (float k) {
glPushMatrix () ;

glScalef (k,k,k) ;
glBegin (GL_LINE LOOP) ;
glVertex3£(0,0,0) ;
glVertex3£(1,0,0);
glVertex3f(1,1,0);
glVertex3f£(0,1,0);
glEnd() ;

glPopMatrix () ;

13

Matrix Stacks

* advantages
* no need to compute inverse matrices all the time
* modularize changes to pipeline state
 avoids incremental changes to coordinate systems
« accumulation of numerical errors
» practical issues
* in graphics hardware, depth of matrix stacks is
limited
* (typically 16 for model/view and about 4 for projective
matrix)

14

Transformation Hierarchy Example 3

glLoadIdentity () ;

glTranslatef(4,1,0);

glPushMatrix() ;

glRotatef (45,0,0,1) ;
glTranslatef (0,2,0) ;

glScalef(2,1,1);

glTranslate(1,0,0) ;

glPopMatrix() ;

15

Transformation Hierarchy Example 4

glTranslate3f(x,y,0);
glRotatef(6,,0,0,1);

DrawBody();

glPushMatrix();

glTranslate3f(0,7,0);

DrawHead();

glPopMatrix();

glPushMatrix();

glTranslate(2.5,5.5,0);

glRotatef(6,,0,0,1);

DrawUArm();

glTranslate(0,-3.5,0);

glRotatef(6,,0,0,1);

DrawlLArm();
glPopMatrix();

... (draw other arm)
16

Hierarchical Modelling

* advantages
- define object once, instantiate multiple copies
* transformation parameters often good control knobs
* maintain structural constraints if well-designed
* limitations
* expressivity: not always the best controls
» can’t do closed kinematic chains
» keep hand on hip
» can’t do other constraints

 collision detection
+ self-intersection
- walk through walls

17

Single Parameter: Simple

« parameters as functions of other params
* clock: control all hands with seconds s

\ 9
e s

m = s/60, h=m/60,
theta_s = (2 pi s) / 60,
theta_m = (2 pi m) /60,

theta h = (2 pi h) / 60 —

18

Single Parameter: Complex

* mechanisms not easily expressible with
affine transforms

http://www.flying-pig.co.uk

19

Single Parameter: Complex

* mechanisms not easily expressible with
affine transforms

wanw flying-plag.ca.u

i

http://www.flying-pig.co.uk/mechanisms/pagesl/irregular.htmi

20

Display Lists

21

Display Lists

« precompile/cache block of OpenGL code for reuse
* usually more efficient than immediate mode
 exact optimizations depend on driver
+ good for multiple instances of same object
 but cannot change contents, not parametrizable
 good for static objects redrawn often
- display lists persist across multiple frames

* interactive graphics: objects redrawn every frame from
new viewpoint from moving camera

» can be nested hierarchically

* snowman example
http://www.lighthouse3d.com/opengl/displaylists

22

One Snowman . R .

void drawSnowMan() {

glColor31(1.01, 1.0f, 1.0f);

/l Draw Body
glTranslatef(0.0f ,0.75f, 0.01);
glutSolidSphere(0.751,20,20);

/l Draw Head
glTranslatef(0.01, 1.0f, 0.0f);
glutSolidSphere(0.251,20,20);

/l Draw Eyes

glPushMatrix();
glColor3£(0.01,0.01,0.01);
glTranslatef(0.05f, 0.10f, 0.18f);
glutSolidSphere(0.051,10,10);
glTranslatef(-0.1f, 0.0f, 0.01);
glutSolidSphere(0.051,10,10);
glPopMatrix();

// Draw Nose

glColor3£(1.0f, 0.5f , 0.5f);
glRotatef(0.01,1.01f, 0.0f, 0.01);
glutSolidCone(0.081,0.51,10,2);

h

23

Instantiate Many Snowmen

// Draw 36 Snowmen

for(inti=-3;i<3; i++)

for(int j=-3; j <3; j++) {
glPushMatrix();

glTranslatef(i*10.0, 0, j * 10.0);

// Call the function to draw a snowman

drawSnowMan();

glPopMatrix();

36K polygons, 55 FPS ot

Making Display Lists

GLuint createDL() {

GLuint snowManDL;

/I Create the id for the list

snowManDL = glGenLists(1);
gINewList(snowManDL,GL_COMPILE);
drawSnowMan();

glEndList();

return(snowManDL); }

snowmanDL = createDL();
for(int i =-3; i < 3; i++)
for(int j=-3; j <3; j++) {
glPushMatrix();
glTranslatef(i*10.0, 0, j * 10.0);

glCallList(Dlid);
glPopMatrix(); } 36K polygons, 153 FPS 2

Transforming Normals

26

Transforming Geometric Objects

* lines, polygons made up of vertices

* just transform the vertices, interpolate
between

* does this work for everything? no!

27

Computing Normals

* polygon:
POlyg P

N
& N =(P, - P)x(P,~)
P

1 P
* assume vertices orde2red CCW when viewed
from visible side of polygon
* normal for a vertex
* specify polygon orientation
* used for lighting

 supplied by model (i.e., sphere),
or computed from neighboring polygons

28

Transforming Normals

what is a normal?
« a direction
* homogeneous coordinates: w=0 means direction
 often normalized to unit length
* VvS. points/vectors that are object vertex locations
what are normals for?

- specify orientation of polygonal face
- used when computing lighting

so if points transformed by matrix M, can we just transform
normal vector by M too?

29

Transforming Normals

X' [my, my, my T
| My My My T
| 1
_O 0 0 0 1

S
|

w§

§

w§
<

S N = =

translations OK: w=0 means unaffected
rotations OK
uniform scaling OK

these all maintain direction

30

Transforming Normals

* nonuniform scaling does not work
» x-y=0 plane
* line x=y

* normal: [1,-1,0]
» direction of line x=-y
* (Ignore normalization for now)

31

Transforming Normals

 apply nonuniform scale: stretch along x by 2
* new plane x = 2y

 transformed normal: [2,-1,0]

21 [2 0 0 Of1]

-1l [0 1 0 0f-1
ol 10 o 1 o0
0] [0 0 0 1]0]

* normal is direction of line x = -2y or x+2y=0
* not perpendicular to plane!
 should be direction of 2x = -y

32

Planes and Normals

* plane is all points perpendicular to normal
- N-P=0 (with dot product)
.+ N'P =0 (matrix multiply requires transpose)

N=||P=

o S Q)

L
Y
<
W

d
- explicit form: plane = ax+ by +cz+d

33

Finding Correct Normal Transform

* transform a plane

'
P P = MP given M,
N > N'= ON what should Q be?
N'T P' = O stay perpendicular
(QN)T (MP) = O substitute from above
Il _ (AB)T =BTA"
N O MP=0
QTM=] N'P=0ifQ™™M =1
_1\T thus the normal to any surface can be
Q = (M) transformed by the inverse transpose of the

modelling transformation
34

Assignments

35

Assignments

* project 1
» out today, due 5:59pm Fri Feb 2
* you should start very soon!

* build armadillo out of cubes and 4x4 matrices
* think cartoon, not beauty

 template code gives you program shell, Makefile
* http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007/p1.tar.gz

* written homework 1
 out today, due 3pm Fri Feb 2
* theoretical side of material

36

http://www.delargy.com/images/2

Real Armadillos

o
-

<
...-_?‘."
ATy

Ty

by

http://armadillo.blueprint.org/images/armadillo.omp
http://biology.clc.uc.edu/graphics/bio106/armadillo.JPG

http://www.phillyist.com/attachments/philly mike/armadillo.jpg
O_2FIa/armadiIIo.JPG ;

g;‘i

4.

Articulated Armadillo

38

Articulated Armadillo

39

More Fun With Boxes and Matrices:

Lemurs!

41

Giraffes!

42

Giraffes!

43

Kangaroos!

44

Demo

45

Project 1 Advice

* do not model everything first and only then
worry about animating

* Interleave modelling, animation
» add body part, then animate it
» discover if on wrong track sooner
» depenencies: can’'t get anim credit if no model
* use middle body as scene graph root
» check from all camera angles

46

Project 1 Advice

* finish all required parts before
» going for extra credit
» playing with lighting or viewing
* ok to use glRotate, glTranslate, glScale
* ok to use glutSolidCube, or build your own

» where to put origin? your choice
- center of object, range - .5to +.5
* corner of object, range 0 to 1

47

Project 1 Advice

* visual debugging
» color cube faces differently

» colored lines sticking out of glutSolidCube
faces

» thinking about transformations
* move physical objects around

* play with demos
* Brown scenegraph applets

48

Project 1 Advice

* first: jJump cut from old to new position
» all change happens in single frame

 do last: add smooth transition
» change happens gradually over 30 frames
* key click triggers animation loop
» explicitly redraw 30 times

* linear interpolation:
each time, param += (new-o0ld)/30

« example: 5-frame transition

49

Tail Wag Frame 0

50

Tail Wag Frame 1

51

Tail Wag Frame 2

52

Tail Wag Frame 3

53

Tail Wag Frame 4

54

Tail Wag Frame 5

55

Project 1 Advice

* transitions

- safe to linearly interpolate parameters for
glRotate/glTranslate/glScale

» do not interpolate individual elements of 4x4
matrix!

56

Style

you can lose up to 15% for poor style
most critical: reasonable structure

* yes: parametrized functions

* no: cut-and-paste with slight changes
reasonable names (variables, functions)
adequate commenting

* rule of thumb: what if you had to fix a bug two
years from now?

global variables are indeed acceptable

57

Version Control

bad idea: just keep changing same file

save off versions often

- after got one thing to work, before you try starting
something else

» just before you do something drastic
how?
* not good: commenting out big blocks of code

* a little better: save off file under new name
» p1.almostworks.cpp, p1.fixedbug.cpp

much better:use version control software
» strongly recommended

58

Version Control Software

easy to browse previous work
easy to revert if needed

for maximum benefit, use meaningful comments to
describe what you did

» “started on tail”, “fixed head breakoff bug”, “leg code
compiles but doesn’t run”

useful when you're working alone
critical when you're working together

many choices: RCS, CVS, subversion

* RCS is a good place to start

 easy to use, installed on lab machines
59

RCS Basics

setup, just do once in a directory
« mkdir RCS

checkin
* ci—u p1.cpp
checkout
* co—lpl.cpp
see history
* rcs log p1.cpp
compare to previous version
* rcsdiff p1.cpp
checkout old version to stdout
 co—p1.5pl.cpp > pl.cpp.d5

60

Graphical File Comparison

* installed on lab machines

- xfdiff4 (side by side comparison)

» xwdiff (in-place, with crossouts)
* Windows: windiff

* http://keithdevens.com/files/windiff
* Macs: FileMerge

* in /Developer/Applications/Utilities

61

