
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2007

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

Blending, Modern Hardware

Week 12, Mon Apr 2

2

Old News

• extra TA office hours in lab for hw/project
Q&A
• next week: Thu 4-6, Fri 10-2

• last week of classes:
• Mon 2-5, Tue 4-6, Wed 2-4, Thu 4-6, Fri 9-6

• final review Q&A session
• Mon Apr 16 10-12

• reminder: no lecture/labs Fri 4/6, Mon 4/9

3

New News

• project 4 grading slots signup
• Wed Apr 18 10-12

• Wed Apr 18 4-6

• Fri Apr 20 10-1

4

Review: Volume Graphics

• for some data, difficult to create polygonal mesh

• voxels: discrete representation of 3D object
• volume rendering: create 2D image from 3D object

• translate raw densities into colors and
transparencies
• different aspects of the dataset can be emphasized

via changes in transfer functions

5

Review: Volume Graphics

• pros
• formidable technique for data exploration

• cons
• rendering algorithm has high complexity!

• special purpose hardware costly (~$3K-$10K)

volumetric human head (CT scan) 6

Review: Isosurfaces

• 2D scalar fields: isolines
• contour plots, level sets

• topographic maps

• 3D scalar fields: isosurfaces

7

Review: Isosurface Extraction

• array of discrete point
samples at grid points
• 3D array: voxels

• find contours
• closed, continuous

• determined by iso-value

• several methods
• marching cubes is most

common
1 2 3 4 3

2 7 8 6 2

3 7 9 7 3

1 3 6 6 3

0 1 1 3 2

Iso-value = 5
8

Review: Marching Cubes

• create cube

• classify each voxel

• binary labeling of each voxel to create
index

• use in array storing edge list

• all 256 cases can be derived from
15 base cases

• interpolate triangle vertex

• calculate the normal at each cube
vertex

• render by standard methods

11110100

9

Review: Direct Volume Rendering Pipeline

Classify

Shade

Interpolate

Composite

• do not compute surface

10

Review: Transfer Functions To Classify

• map data value to color and opacity
• can be difficult, unintuitive, and slow

f

α

f

α

f

α

f

α

Gordon Kindlmann 11

Review: Volume Rendering Algorithms

• ray casting
• image order, forward viewing

• splatting
• object order, backward viewing

• texture mapping
• object order
• back-to-front compositing

12

Review: Ray Casting Traversal Schemes

Depth

Intensity
Max

Average

Accumulate
First

13

Blending

14

Rendering Pipeline

Geometry
Database
Geometry
Database

Model/View
Transform.
Model/View
Transform. LightingLighting Perspective

Transform.
Perspective
Transform. ClippingClipping

Scan
Conversion

Scan
Conversion

Depth
Test

Depth
Test

TexturingTexturing BlendingBlending
Frame-
buffer

Frame-
buffer

15

Blending/Compositing

• how might you combine multiple elements?

• foreground color A, background color B

16

Premultiplying Colors
• specify opacity with alpha channel: (r,g,b,α)

• α=1: opaque, α=.5: translucent, α=0: transparent

• A over B
• C = αA + (1-α)B

• but what if B is also partially transparent?
• C = αA + (1-α) βB = βB + αA + βB - α βB
• γ = β + (1-β)α = β + α – αβ

• 3 multiplies, different equations for alpha vs. RGB

• premultiplying by alpha
• C’ = γ C, B’ = βB, A’ = αA

• C’ = B’ + A’ - αB’
• γ = β + α – αβ

• 1 multiply to find C, same equations for alpha and RGB

17

Modern GPU Features

18

Reading

• FCG Chap17 Using Graphics Hardware
• especially 17.3

• FCG Section 3.8 Image Capture and Storage

19

Rendering Pipeline

• so far
• rendering pipeline as a specific set of stages

with fixed functionality
• modern graphics hardware more flexible

• programmable “vertex shaders” replace
several geometry processing stages

• programmable “fragment/pixel shaders”
replace texture mapping stage

• hardware with these features now called
Graphics Processing Unit (GPU)

20

Modified Pipeline

• vertex shader
• replaces model/view,

lighting, and perspective

• have to implement these
yourself

• but can also implement
much more

• fragment/pixel shader
• replaces texture mapping

• fragment shader must do
texturing

• but can do other things

21

Vertex Shader Motivation

• hardware transform and lighting:
• i.e. hardware geometry processing
• was mandated by need for higher

performance in the late 90s
• previously, geometry processing was done on

CPU, except for very high end machines
• downside: now limited functionality due to

fixed function hardware

22

Vertex Shaders

• programmability required for more complicated
effects
• tasks that come before transformation vary widely

• putting every possible lighting equation in hardware
is impractical

• implementing programmable hardware has
advantages over CPU implementations

• better performance due to massively parallel
implementations

• lower bandwidth requirements (geometry can be
cached on GPU)

23

Vertex Program Properties

• run for every vertex, independently
• access to all per-vertex properties

• position, color, normal, texture coords, other custom
properties

• access to read/write registers for temporary results
• value is reset for every vertex

• cannot pass information from one vertex to the next

• access to read-only registers
• global variables like light position, transformation

matrices

• write output to a specific register for resulting color

24

Vertex Shaders/Programs

• concept
• programmable pipeline stage

• floating-point operations on 4 vectors
• points, vectors, and colors!

• replace all of
• model/view transformation

• lighting

• perspective projection

25

Vertex Shaders/Programs

• a little assembly-style program is executed on every
individual vertex

• it sees:
• vertex attributes that change per vertex:

• position, color, texture coordinates…

• registers that are constant for all vertices (changes
are expensive):

• matrices, light position and color, …

• temporary registers

• output registers for position, color, tex coords…

26

Vertex Programs Instruction Set

• arithmetic operations on 4-vectors:
• ADD, MUL, MAD, MIN, MAX, DP3, DP4

• operations on scalars
• RCP (1/x), RSQ (1/√x), EXP, LOG

• specialty instructions
• DST (distance: computes length of vector)
• LIT (quadratic falloff term for lighting)

• very latest generation:
• loops and conditional jumps
• still more expensive than straightline code

27

Vertex Programs Applications

• what can they be used for?
• can implement all of the stages they replace
• but can allocate resources more dynamically

• e.g. transforming a vector by a matrix requires 4 dot
products

• enough memory for 24 matrices
• can arbitrarily deform objects

• procedural freeform deformations

• lots of other applications
• shading
• refraction
• …

28

Skinning

• want to have natural looking joints on human
and animal limbs

• requires deforming geometry, e.g.
• single triangle mesh modeling both upper and

lower arm

• if arm is bent, upper and lower arm remain
more or less in the same shape, but transition
zone at elbow joint needs to deform

29

Skinning

• approach:
• multiple transformation matrices

• more than one model/view matrix stack, e.g.
• one for model/view matrix for lower arm, and

• one for model/view matrix for upper arm

• every vertex is transformed by both matrices
• yields 2 different transformed vertex positions!

• use per-vertex blending weights to interpolate
between the two positions

30

Skinning

• arm example:
• M1: matrix for upper arm

• M2: matrix for lower arm

Upper arm:Upper arm:
weight for M1=1weight for M1=1
weight for M2=0weight for M2=0

Lower arm:Lower arm:
weight for M1=0weight for M1=0
weight for M2=1weight for M2=1

Transition zone:Transition zone:
weight for M1 between 0..1weight for M1 between 0..1
weight for M2 between 0..1weight for M2 between 0..1 31

Skinning

•

ExampleExample
by NVIDIAby NVIDIA 32

Skinning

• in general:
• many different matrices make sense!

• EA facial animations: up to 70 different
matrices (“bones”)

• hardware supported:
• number of transformations limited by available

registers and max. instruction count of vertex
programs

• but dozens are possible today

33

Fragment Shader Motivation

• idea of per-fragment shaders not new
• Renderman is the best example, but not at all real time

• traditional pipeline: only major per-pixel operation is texturing
• all lighting, etc. done in vertex processing, before primitive

assembly and rasterization

• in fact, a fragment is only screen position, color, and tex-coords
• normal vector info is not part of a fragment, nor is world position

• what kind of shading interpolation does this restrict you to?

34

Fragment Shader Generic Structure

35

Fragment Shaders

• fragment shaders operate on fragments in place of
texturing hardware

• after rasterization
• before any fragment tests or blending

• input: fragment, with screen position, depth, color,
and set of texture coordinates

• access to textures, some constant data, registers
• compute RGBA values for fragment, and depth

• can also kill a fragment (throw it away)

• two types of fragment shaders
• register combiners (GeForce4)
• fully programmable (GeForceFX, Radeon 9700)

36

Fragment Shader Functionality

• consider requirements for Phong shading
• how do you get normal vector info?

• how do you get the light?

• how do you get the specular color?

• how do you get the world position?

37

Shading Languages

• programming shading hardware still difficult
• akin to writing assembly language programs

38

Vertex Program Example
• #blend normal and position
• # v= αv1+(1-α)v2 = α(v1-v2)+ v2
• MOV R3, v[3] ;

MOV R5, v[2] ;
ADD R8, v[1], -R3 ;
ADD R6, v[0], -R5 ;
MAD R8, v[15].x, R8, R3
MAD R6, v[15].x, R6, R5 ;

• # transform normal to eye space
DP3 R9.x, R8, c[12] ;
DP3 R9.y, R8, c[13] ;
DP3 R9.z, R8, c[14] ;

• # transform position and output
DP4 o[HPOS].x, R6, c[4] ;
DP4 o[HPOS].y, R6, c[5] ;
DP4 o[HPOS].z, R6, c[6] ;
DP4 o[HPOS].w, R6, c[7] ;

• # normalize normal
DP3 R9.w, R9, R9 ;
RSQ R9.w, R9.w ;
MUL R9, R9.w, R9 ;

• # apply lighting and output color
DP3 R0.x, R9, c[20] ;
DP3 R0.y, R9, c[22] ;
MOV R0.zw, c[21] ;
LIT R1, R0 ;
DP3 o[COL0], c[21], R1
;

39

Vertex Programming Example

• example (from Stephen Cheney)
• morph between a cube and sphere while doing lighting

with a directional light source (gray output)
• cube position and normal in attributes (input) 0,1
• sphere position and normal in attributes 2,3
• blend factor in attribute 15
• inverse transpose model/view matrix in constants 12-14

• used to transform normal vectors into eye space

• composite matrix is in 4-7
• used to convert from object to homogeneous screen space

• light dir in 20, half-angle vector in 22, specular power,
ambient, diffuse and specular coefficients all in 21

40

Shading Languages

• programming shading hardware still difficult
• akin to writing assembly language programs

• shading languages and accompanying compilers
allow users to write shaders in high level languages

• examples
• Microsoft’s HLSL (part of DirectX 9)

• Nvidia’s Cg (compatable with HLSL)

• OpenGL Shading Language

• (Renderman is ultimate example, but not real time)

41

Cg

• Cg is a high-level language developed by
NVIDIA
• looks like C or C++

• actually a language and a runtime
environment
• can compile ahead of time, or compile on the

fly

• what it can do is tightly tied to the hardware

42

Vertex Program Example

43

Pixel Program Example

44

Cg Runtime

• sequence of
commands to
get your Cg
program onto
the hardware

45

Bump Mapping

• normal mapping approach:
• directly encode the normal into the texture map

• (R,G,B)= (x,y,z), appropriately scaled

• then only need to perform illumination computation
• interpolate world-space light and viewing direction

from the vertices of the primitive
• can be computed for every vertex in a vertex shader

• get interpolated automatically for each pixel

• in the fragment shader:
• transform normal into world coordinates

• evaluate the lighting model

46

Bump Mapping

• examples

47

GPGPU Programming

• General Purpose GPU
• use graphics card as SIMD parallel processor

• textures as arrays

• computation: render large quadrilateral

• multiple rendering passes

48

Image Formats

• major issue: lossless vs. lossy compression
• JPEG is lossy compression

• do not use for textures
• loss carefully designed to be hard to notice

with standard image use

• texturing will expose these artifacts horribly!

• can convert to other lossless formats, but
information was permanently lost

49

Acknowledgements

• Wolfgang Heidrich
• http://www.ugrad.cs.ubc.ca/~cs314/WHmay2006/

