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Visualization

Week 11, Fri Mar 30
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News

• extra TA office hours in lab for hw/project
Q&A
• next week: Thu 4-6, Fri 10-2

• last week of classes:
• Mon 2-5, Tue 4-6, Wed 2-4, Thu 4-6, Fri 9-6

• final review Q&A session
• Mon Apr 16 10-12

• reminder: no lecture/labs Fri 4/6, Mon 4/9
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Review: Collision Proxy Tradeoffs

         increasing complexity & tightness of fit

   decreasing cost of (overlap tests + proxy update)

AABB OBBSphere Convex Hull6-dop

• collision proxy (bounding volume) is piece of geometry used
to represent complex object for purposes of finding collision

• proxies exploit facts about human perception
• we are bad at determining collision correctness

• especially many things happening quickly
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Review: Spatial Data Structures
uniform grids

bounding volume hierarchies

octrees

BSP trees

kd-trees

OBB trees
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Review: Aliasing

• incorrect appearance of high frequencies as
low frequencies

• to avoid: antialiasing
• supersample

• sample at higher frequency

• low pass filtering
• remove high frequency function parts

• aka prefiltering, band-limiting
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Review: Supersample and Average

• supersample: create image at higher resolution
• e.g. 768x768 instead of 256x256
• shade pixels wrt area covered by thick line/rectangle

• average across many pixels
• e.g.  3x3 small pixel block to find value for 1 big pixel
• rough approximation divides each pixel into a finer grid of pixels
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Review: Image As Signal

• 1D slice of raster image
• discrete sampling of 1D spatial signal

• theorem
• any signal can be represented as an (infinite)

sum of sine waves at different frequencies

Examples from Foley, van Dam, Feiner, and Hughes
Pixel position across scanline
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Review: Sampling Theorem and Nyquist Rate

• Shannon Sampling Theorem
• continuous signal can be completely recovered from

its samples iff sampling rate greater than twice
maximum frequency present in signal

• sample past Nyquist Rate to avoid aliasing
• twice the highest frequency component in the

image’s spectrum
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Review: Low-Pass Filtering
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Scientific Visualization
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Reading

• FCG Chapter 23
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Surface Graphics

• objects explicitly defined by surface or
boundary representation
• mesh of polygons

200 polys 1000 polys 15000 polys
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Surface Graphics

• pros
• fast rendering algorithms available
• hardware acceleration cheap
• OpenGL API for programming
• use texture mapping for added realism

• cons
• discards interior of object, maintaining only the shell
• operations such cutting, slicing & dissection not

possible
• no artificial viewing modes such as semi-

transparencies, X-ray
• surface-less phenomena such as clouds, fog & gas

are hard to model and represent
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Volume Graphics

• for some data, difficult to create polygonal mesh

• voxels: discrete representation of 3D object
• volume rendering: create 2D image from 3D object

• translate raw densities into colors and
transparencies
• different aspects of the dataset can be emphasized

via changes in transfer functions
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Volume Graphics

• pros
• formidable technique for data exploration

• cons
• rendering algorithm has high complexity!

• special purpose hardware costly (~$3K-$10K)

volumetric human head (CT scan) 16

Isosurfaces

• 2D scalar fields: isolines
• contour plots, level sets

• topographic  maps

• 3D scalar fields: isosurfaces
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Volume Graphics: Examples

anatomical atlas from visible
human (CT & MRI) datasets

industrial CT - structural failure,
security applications

flow around airplane wing shockwave visualization: simulation
with Navier-Stokes PDEs 18

Isosurface Extraction

• array of discrete point
samples at grid points
• 3D array: voxels

• find contours
• closed, continuous

• determined by iso-value

• several methods
• marching cubes is most

common
1 2 3 4 3

2 7 8 6 2

3 7 9 7 3

1 3 6 6 3

0 1 1 3 2

Iso-value = 5
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MC 1: Create a Cube

• consider a cube defined by eight data values

(i,j,k) (i+1,j,k)

(i,j+1,k)

(i,j,k+1)

(i,j+1,k+1) (i+1,j+1,k+1)

(i+1,j+1,k)

(i+1,j,k+1)
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MC 2: Classify Each Voxel

• classify each voxel according to whether lies
• outside the surface (value > iso-surface

value)

• inside the surface (value <= iso-surface value)

8
Iso=7

8

8

55

1010

10

Iso=9

=inside
=outside

21

MC 3: Build An Index

• binary labeling of each voxel to create index

v1 v2

v6

v3v4

v7v8

v5

inside =1
outside=0

11110100

00110000
Index:

v1 v2 v3 v4 v5 v6 v7 v8
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MC 4: Lookup Edge List

• use index to access array storing list of edges
• all 256 cases can be derived from 15 base

cases
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MC 4: Example

• index = 00000001

• triangle 1 = a, b, c

a

b

c

24

MC 5: Interpolate Triangle Vertex

• for each triangle edge
• find vertex location along edge using linear

interpolation of voxel values
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MC 6: Compute Normals

• calculate the normal at each cube vertex
• use linear interpolation to compute the

polygon vertex normal
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MC 7: Render!
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Direct Volume Rendering

• do not compute surface
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Rendering Pipeline

Classify
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Classification

• data set has application-specific values
• temperature, velocity, proton density, etc.

• assign these to color/opacity values to make
sense of data

• achieved through transfer functions
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Transfer Functions

• map data value  to color and opacity
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Transfer Functions

Human Tooth CT

α(f)RGB(f)

f 

RGB

shading,
compositing…

α

Gordon Kindlmann 32

Setting Transfer Functions

• can be difficult, unintuitive, and slow

f

α

f

α
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α
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Gordon Kindlmann



33

Rendering Pipeline

Classify

Shade
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Light Effects

• usually only consider reflected part

Light

absorbed

transmitted

reflected

Light=refl.+absorbed+trans.

Light

ambient

specular

diffuse

ssddaa IkIkIkI ++=

Light=ambient+diffuse+specular
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Rendering Pipeline

Classify

Shade

Interpolate
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Interpolation

• given:

• needed:

2D 1D
• given:

• needed:

nearest
neighbor

linear
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Rendering Pipeline

Classify

Shade

Interpolate

Composite
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Volume Rendering Algorithms

• ray casting
• image order, forward viewing

• splatting
• object order, backward viewing

• texture mapping
• object order
• back-to-front compositing
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Ray Traversal Schemes

Depth

Intensity
Max

Average

Accumulate
First
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Ray Traversal - First

• first: extracts iso-surfaces (again!)

Depth

Intensity

First
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Ray Traversal - Average

• average: looks like X-ray

Depth

Intensity

Average
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Ray Traversal - MIP

• max: Maximum Intensity Projection
• used for Magnetic Resonance Angiogram

Depth

Intensity
Max
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Ray Traversal - Accumulate

• accumulate: make transparent layers visible

Depth

Intensity

Accumulate
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Splatting

• each voxel represented as fuzzy ball
• 3D gaussian function

• RGBa value depends on transfer function

• fuzzy balls projected on screen, leaving
footprint called splat
• composite front to back, in object order

45

Texture Mapping

• 2D: axis aligned 2D textures
• back to front compositing

• commodity hardware support

• must calculate texture
coordinates, warp to image
plane

• 3D: image aligned 3D texture
• simple to generate texture

coordinates
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InfoVis Example: TreeJuxtaposer

• side by side comparison of evolutionary trees
• stretch and squish navigation

• guaranteed visibility

• progressive rendering

• demo - downloadable from http://olduvai.sf.net/tj


