University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2007

Tamara Munzner

OpenGL/GLUT Intro

Week 1, Fri Jan 12
http://www.ugrad.cs.ubc.ca/~cs314/Vian2007

News

» Labs start next week

» Reminder: my office hours Wed/Fri 11-12
* in your 011 lab, not my X661 office

 Leftover handouts will be in 011 lab

Today’s Readings

- today
- RB Chap Introduction to OpenGL

- RB Chap State Management and Drawing Geometric
Obijects

- RB App Basics of GLUT (Aux inv 1.1)

Readings for Next Four Lectures

FCG Chap 6 Transformation Matrices
* except 6.1.6, 6.3.1

FCG Sect 13.3 Scene Graphs
RB Chap Viewing

* Viewing and Modeling Transforms until Viewing
Transformations

- Examples of Composing Several Transformations
through Building an Articulated Robot Arm

RB Appendix Homogeneous Coordinates and
Transformation Matrices

* until Perspective Projection
RB Chap Display Lists

Correction: Vector-Vector Multiplication

* multiply: vector * vector = scalar

 dot product, aka inner product uev
u | (v
Uy 1 * V2 =(”1*V1) ' v2)+(u3*v3)
U, Vs

o | uevs= HuHHVH cosO
» geometric interpretation

- lengths, angles u
- can find angle between two 0
vectors

\Y

Correction: Dot Product Example

U Vi

u, | * v, =(“1*V1) >X<"2)"'(’“‘3>X<V3)
Us []V

6

I{e|7]=(6*)+1*7)+(2%3)=6+7+6=19

Review: Working with Frames

P =0+xi+)]

I:1 P = (3!'1)
F2 P = ('15,2)
F3 P = (1,2)

More: Working with Frames

P =0+xi+)]

I
OT .p
‘_FZ {) F1 p = (3!'1)
1 ; F, p=(1.5,2)
[F; p=(1,2)

More: Working with Frames

P =0 +xi+]
i,
O‘i .p
BLET fop=(E1)
ilO

F2 P= ('1 552)

50 F; p=(1,2)

More: Working with Frames

1/ p=0 +x1+)]
o
U e =)
T F, p=(-1.5,2)
sl Ry p=(1,2)

10

Rendering

 goal
* transform computer models into images
* may or may not be photo-realistic
* Interactive rendering
* fast, but limited quality
 roughly follows a fixed patterns of operations
* rendering pipeline
- offline rendering
* ray tracing
* global illumination

11

Rendering

* tasks that need to be performed
(in no particular order):

 project all 3D geometry onto the image plane
« geometric transformations

 determine which primitives or parts of primitives are

visible

* hidden surface removal

» determine which pixels a geometric primitive covers
* scan conversion

« compute the color of every visible surface point
* lighting, shading, texture mapping

12

Rendering Pipeline

« what is the pipeline?
 abstract model for sequence of operations to
transform geometric model into digital image
* abstraction of the way graphics hardware works

 underlying model for application programming

interfaces (APIs) that allow programming of graphics
hardware

* OpenGL
* Direct 3D

 actual implementation details of rendering pipeline
will vary

13

Rendering Pipeline

Geometry | [Model/View N Perspectiv .
Database Transform. Lighting Transform. EJERI |
| | | | Depth || | | Frame-
Texturing |= Test Blending buffer

14

Geometry Database

Geometry

Database

A

 application-specific data structure for
holding geometric information

» depends on specific needs of application

* triangle soup, points, mesh with connectivity
information, curved surface

* geometry database

15

Model/View Transformation

Model/View
Transform.

Geometry
Database

* modeling transformation

/A

* map all geometric objects from local coordinate

system into world coordinates

* viewing transformation

* map all geometry from world coordinates into

camera coordinates

16

Geometry
Database

* lighting
» compute brightness based on property of
material and light position(s)

» computation is performed per-vertex

Lighting

Model/View
Transform.

|=> Lighting

/i

17

Perspective Transformation

Geometry
Database

Model/View Liahtina k Perspective
Transform. > 9 g Transform.

* perspective transformation
 projecting the geometry onto the image plane

* projective transformations and model/view
transformations can all be expressed with 4x4
matrix operations

18

Clipping

Geometry
Database

Model/View Liahtin _JPerspective Cliobi
Transform._b 9 g Transform. 'PpPINg

* clipping ‘
» removal of parts of the geometry that fall
outside the visible screen or window region

* may require re-tessellation of geometry

19

Scan Conversion

Geometry
Database

Model/View Liahtina k Perspective
Transform." 9 g Transform.

Clipping

|

II_ Scan

Conversion

* Scan conversion

* turn 2D drawing primitives (lines,
polygons etc.) into individual pixels
(discretizing/sampling)

* interpolate color across primitive

* generate discrete fragments

20

Texture Mapping

Model/View
Transform.

Geometry
Database

N Perspectiv ..
~>| Lighting } Transform. Clipping

|

Texturing

R

* texture mapping
* “gluing images onto geometry”
» color of every fragment is altered by

looking up a new color value from an
Image

21

Depth Test

Geometry ModelNiew}

Lightina Perspective Clibbin
Database Transform.[™ -'9"N9 Transform. 'PPING

Conversion Test

- depth test a

* remove parts of geometry hidden behind
other geometric objects

» perform on every individual fragment
- other approaches (later) 20

S |=>Texturing =» LEfpin

p

Blending

Geometry | |Model/V iewi‘ Perspective

Database | | Transform.[® L'9hting %‘Transform.i* Clipping

Scan — Depth :
Conversioni* Texturing |-» Test |=‘ Blending
* blending
+ final image: write fragments to pixels
« draw from farthest to nearest
* no blending — replace previous color

* blending: combine new & old values with arithmetic
operations

23

Geometry

Database Transform. | Transform. |

Framebuffer

ModeINlewF Lighting “Perspectlve

X

Clipping

Scan i - Depth _ Frame-
Conversioni* ERLITIE | Test i" Blending } buffer
- framebuffer 255 1255 |0 |0 O
| | 255 | 255 | 255 | 255 | 255
- video memory on graphics board that 222 222 fzg 555 555
holds image 155 | 155 | 255 | 255 | 255
0 0 155 | 255 | 255
* double-buffering: two separate buffers|zss [2s5 [155 [0 |0
. . . . 155 | 155 | 255 | 255 | 255
« draw into one while displaying other, |o |0 |155 |255 | 255
then swap to avoid flicker 24

Pipeline Advantages

* modularity: logical separation of different components
- easy to parallelize

- earlier stages can already work on new data while later
stages still work with previous data

* similar to pipelining in modern CPUs

* but much more aggressive parallelization possible
(special purpose hardware!)

« important for hardware implementations
* only local knowledge of the scene is necessary

25

Pipeline Disadvantages

* limited flexibility
* some algorithms would require different
ordering of pipeline stages
* hard to achieve while still preserving
compatibility
 only local knowledge of scene is available
» shadows, global illumination difficult

26

OpenGL (briefly)

27

OpenGL

started in 1989 by Kurt Akeley
» based on IRIS GL by SGI

API to graphics hardware

designed to exploit hardware optimized for
display and manipulation of 3D graphics

implemented on many different platforms
low level, powerful flexible

pipeline processing

- set state as needed

28

Graphics State

* set the state once, remains until overwritten

° 9
° 9
° 9
° 9

Color3f(1.0, 1.0, 0.0)) set color to yellow
SetClearColor(0.0, 0.0, 0.2) () dark blue bg
Enable(LIGHTO) () turn on light
Enable(GL_DEPTH_TEST) () hidden surf.

29

Geometry Pipeline

tell it how to interpret geometry
glBegin(<mode of geometric primitives>)

mode = GL_TRIANGLE, GL_POLYGON, etc.

feed it vertices

glVertex3f(-1.0, 0.0, -1.0)
glVertex3f(1.0, 0.0, -1.0)
glVertex3f(0.0, 1.0, -1.0)

tell it you're done
glEnd()

30

Open GL: Geometric Primitives

[T

ks [ANic
vie Ey2

GL_FOINTS

f"_‘_,--""ﬂ
" e
I.rﬁ""j‘:‘_"aciw
g1 <]

GL_LINES
v vE

va
wi ¥

GL_TRIANGLES

vh
i
1,
v

GL_OUADS

va

glPointSize(float size);

glLineWidth(float width);

glColor3f(float r, float g, float b);
MO

ﬂ-.;)ﬁ
Wy .
GL_LIMNE_STRIFP

v v

vl
'ﬂl/\w_A

GL_TRIAMGLE_STRIP

ﬁ vE
2 v

Gl_QUAD_STRIF

vE

m(:-. “,,?/’ -
Vi

i

GL_UNE_LOOF

N 2

Iay
v

EGL_TRIANGLE_FAN
wl

V!

v3
GL_POLYGQON 31

Code Sample

void display ()
{
glClearColor (0.0, 0.0, 0.0, 0.0);
glClear (GL COLOR BUFFER BIT) ;
glColor3£(0.0, 1.0, 0.0);
glBegin (GL POLYGON) ;
glVertex3£(0.25, 0.25, -0.5);
glvVertex3£(0.75, 0.25, -0.5);
glvertex3£(0.75, 0.75, -0.5);
glvVertex3£(0.25, 0.75, -0.5);
glEnd() ;
glFlush() ;

* more OpenGL as course continues

32

GLUT

33

GLUT: OpenGL Utility Toolkit

developed by Mark Kilgard (also from SGl)

simple, portable window manager
* opening windows
» handling graphics contexts
* handling input with callbacks
» keyboard, mouse, window reshape events
* timing
* Idle processing, idle events
designed for small-medium size applications
distributed as binaries
* free, but not open source

34

GLUT Draw World

int main(int argc, char **argv)

{
glutInit(&argc, argv) ;
glutInitDisplayMode (GLUT RGB |

GLUT DOUBLE | GLUT DEPTH) ;

glutInitWindowSize(640, 480);
glutCreateWindow("openGLDemo") ;
glutDisplayFunc(DrawWorld) ;
glutIdleFunc (Idle) ;

glClearColor(1,1,1);
glutMainLoop () ;

return O; // never reached

35

Event-Driven Programming

* main loop not under your control

* vs. batch mode where you control the flow
» control flow through event callbacks

* redraw the window now

» key was pressed

* mouse moved

* callback functions called from main loop
when events occur

* mouse/keyboard state setting vs. redrawing

36

GLUT Callback Functions

// you supply these kind of functions

void reshape(int w, int h);

void keyboard(unsigned char key, int x, int y);
void mouse (int but, int state, int x, int y);
void idle() ;

void display() ;

// register them with glut

glutReshapeFunc (reshape) ;
glutKeyboardFunc (keyboard) ;
glutMouseFunc (mouse) ;
glutIdleFunc(idle) ;
glutDisplayFunc (display) ;

void glutDisplayFunc (void (*func) (void))
void glutKeyboardFunc (void (*func) (unsigned char key, int x, int y));
void glutIdleFunc (void (*func) ()):

void glutReshapeFunc (void (*func) (int width, int height));
37

Display Function

void DrawWorld() {
glMatrixMode (GL PROJECTION) ;

glLoadIdentity () ;

glMatrixMode (GL MODELVIEW) ;
glLoadIdentity() ;

glClear (GL COLOR BUFFER BIT) ;

angle += 0.05; //animation
glRotatef (angle,0,0,1); //animation

// redraw triangle in new position

glutSwapBuffers() ;
}

* directly update value of angle variable
* S0, why doesn't it spin”?
* only called in response to window/input event3!8

Idle Function

void Idle() {
angle += 0.05;
glutPostRedisplay() ;
}

» called from main loop when no user input

* should return control to main loop quickly
 update value of angle variable here

* then request redraw event from GLUT
» draw function will be called next time through

* continues to rotate even when no user action

39

Keyboard/Mouse Callbacks

* do minimal work
* request redraw for display

« example: keypress triggering animation

» do not create loop in input callback!
» what if user hits another key during animation?

 shared/global variables to keep track of state
» display function acts on current variable value

40

Labs

41

Week 2 Lab

 labs start Tuesday

* project O
« http://www.ugrad.cs.ubc.ca/~cs314/Vian2007/a0

make sure you can compile OpenGL/GLUT
* very useful to test home computing environment
template: spin around obj files
todo: change rotation axis
do handin to test configuration, but not graded

42

Remote Graphics

* OpenGL does not work well remotely
* very slow

* only one user can use graphics at a time

 current X server doesn’t give priority to console, just
does first come first served

« problem: FCFS policy = confusion/chaos

* solution: console user gets priority

 only use graphics remotely if nobody else logged on
 with ‘who’ command, “:0” is console person

* stop using graphics if asked by console user via email
* or console user can reboot machine out from under you

43

