
CPSC 314, Written Homework 4

Out: Wed 30 Mar 2016
Due: Wed 06 Apr 2016 2pm (hand in at start of lecture)

No homework accepted after Fri 08 Apr 2pm
Value: 4% of final grade

Total Points: 100

Name:

Student Number:

Q1 /8
Q2 /6
Q3 /4
Q4 /20
Q5 /24
Q6 /22
Q7 /16
Total /100

Please check one of the following:

2 I did not collaborate with anyone in the completion of this homework.
2 I collaborated with people named below in the completion of this problem set:

Name: Student Number:

Name: Student Number:

Name: Student Number:

1



Interpolation (14 pts)
1. (8 pts) For the following triangle, given coordinates and color components of P1, P2 and P3, use bi-linear interpolation

to find the (r, g, b) color components at that point P. Show your work.

Marking Accept answers for both vertical scan line and horizontal scan line, though the later one is normally imple-
mented. Three points for each intermediate point (PL/PR or PU /PL). Two points for final result.

P (3, 3)

c1

c2

P1(1, 1)

r = 1.0, g = .5, b = .5

P2(3, 7)
PU (3, 7)

r = .5, g = 1.0, b = .5

P3(5, 1)

r = .5, g = 0, b = 1.0

PL(3, 1)

Solution
Using a vertical scan line of bi-linear interpolation, we have:

Prgb =
c2

c1+c2
· PUrgb +

c1
c1+c2

· PLrgb

Since PL lies on the center between P1 and P2, it is simple to its compute color component using PLrgb = (P1rgb +
P3rgb)/2. PU has the same color compoment as P2.

Prgb =
1

3
· PUrgb +

2

3
· PLrgb

=
1

3
· (.5, 1, .5) + 2

3
· (.75, .25, .75)

= (
2

3
,
1

2
,
2

3
)

= (.667, .5, .667)

2



P (3, 3)

c1

c2

d1

d2

b1

b2

P1(1, 1)

r = 1.0, g = .5, b = .5

P2(3, 7)

r = .5, g = 1.0, b = .5

P3(5, 1)

r = .5, g = 0, b = 1.0

PL(5/3, 3) PR(13/3, 3)

Or using a horizontal scan line of bi-linear interpolation, we compute (r,g,b) for point P. By inspection, we see that P is
the center point of PLPR, so we have:

Prgb =
1
2 · PLrgb +

1
2 · PRrgb

To compute PLrgb and PRrgb, we need to know the ratio d1 : d2 and b1 : b2. Due to the similarity of triangles, we see
d1 : d2 = b1 : b2 = c1 : c2 = 2 : 1, so we have:

PLrgb =
d2

d1 + d2
· P2rgb +

d1

d1 + d2
· P2rgb

=
1

3
· (.5, 1, .5) + 2

3
· (1, .5, .5)

= (5/6, 2/3, 1/2)

= (.83, .67, .5)

PRrgb =
b2

b1 + b2
· P2rgb +

b1

b1 + b2
· P3rgb

=
1

3
· (.5, 1, .5) + 2

3
· (.5, 0, 1)

= (1/2, 1/3, 5/6)

= (.5, .33, .83)

Prgb =
1

2
· PLrgb +

1

2
· PRrgb

=
1

2
· (5/6, 2/3, 1/2) + 1

2
· (1/2, 1/3, 5/6)

= (2/3, 1/2, 2/3)

= (.677, .5, .677)

3



2. (6 pts) For the same triangle, find the barycentric coordinates α, β, and γ for P, and use them to interpolate the (r, g, b)
color components at that point. Show your work.

Marking 1.5 points for each α, β, and γ. 1.5 points for final result.

P (3, 3)

P1(1, 1)

r = 1.0, g = .5, b = .5

P2(3, 7)

r = .5, g = 1.0, b = .5

P3(5, 1)

r = .5, g = 0, b = 1.0

PL(3, 1)

Solution
The line between P2 and PL cuts the triangle into two pieces with same area. By inspection, we see that P2P : PPL =
2 : 1. Therefore, AP1 = AP3 = 1

2A ·
2
3 , AP2 = 1

2A ·
1
3 · 2, where A is the area of the triangle formed by P1, P2, P3. We

calculate the barycentric coordinates as follows:

α = AP1/A = 1/3

β = AP2/A = 1/3

γ = AP3/A = 1/3

Using these, we calculate the colour components at P:

Prgb = α · P1rgb + β · P2rgb + γ · P3rgb
= 1/3 · (1, .5, .5) + 1/3 · (.5, 1, .5) + 1/3 · (.5, 0, 1)
= (2/3, 1/2, 2/3)

= (.667, .5, .667)

4



Visibility

3. (4 pts) For the following 2D scene, an eye point is given with respect to an object formed by line segments. Which faces
would be removed for the given eyepoint if backface culling were used? Show your work by drawing in the normals for
each face.

Solution
VCS checks not as simple as Nv > 0, must take eyepoint into account given perspective warping. Blue: angle between
normal and eyepoint-to-plane line greater than 90 degree. Green: angle between normal and eyepoint-to-plane line less
than 90 degree. Cull if angle is greater than 90 degree.
Cull: d, f, g, h, i, k and m. 0.5 point deduction for each missing/incorrect face.

4. (20 pts) You have bought a very cheap graphics card, which has a Z buffer of only 3 bits. You can thus only determine the
visibility relationships of objects in your scene at a very coarse resolution: there are only 23 = 8 bins available. These
bins are represented as the base-10 integers 0 through 7. You should assume that the general GL perspective matrix was
used for projection, with the near plane set to -0.1 and the far plane set to -80.

a) (8 pts) Give the z-values of the planes forming the boundaries of these bins in DCS, the display coordinate system
(which ranges from 0.0 at the near plane to 1.0 at the far plane). That is, what is the value of the plane between bin 0 and
bin 1, between bin 1 and bin 2, and so on.

b) (8 pts) Give the z-values of the planes in the camera coordinate system.

c) (4 pts) Explain why this graphic card might be very bad in terms of depth test.

marking
a) 1 pt deduction for each incorrect number; 4 pts deduction if set far to be 8 rather than 1;

b) 2 pt deduction for each incorrect derivation for equations; 1 pt deduction for sign error; 1 pt deduction for each
incorrect number in final result, up to 3 pts.

Solution

5



a)

Plane z value
near plane 0
between bin 0 and 1 .125
between bin 1 and 2 .25
between bin 2 and 3 .375
between bin 3 and 4 .5
between bin 4 and 5 .625
between bin 5 and 6 .75
between bin 6 and 7 .875
far plane 1

b) To solve this problem, we will need the following equations:

ZDCS = 1� N · (a+ b/z)

a =
zfar

zfar − znear
b =

zfar · znear
znear − zfar

Here N , the number of bits, is 3, so 1� N = 8. We can rearrange to solve for z.

z =
b

(ZDCS/8)− a
(1)

We need to solve equation 1 for each value of the Z-buffer given znear = −.1 and zfar = −80.

a =
−80

−80 + .1
= 1.0013

b =
80 · .1
−.1 + 80

= 0.1001

z =
0.1001

(ZDCS/8)− 1.0013

Plugging in values from 0 to 8 for ZDCS produces the following table:

Plane z value
near plane -0.1
between bin 0 and 1 -.1143
between bin 1 and 2 -.1333
between bin 2 and 3 -.1599
between bin 3 and 4 -.1998
between bin 4 and 5 -.2661
between bin 5 and 6 -.3985
between bin 6 and 7 -.7931
far plane -80

c) Due to the nonlinearity and lack of precision in the range from -.7931 to -80 in VCS, it can lead to depth fighting for
far object.

6



5. (24 pts) Build a BSP tree for the following scene using the polygons (shown as line segments). The cutting plane induced
by a polygon should just extend along the line itself. The labelled side of the polygon should be the right child in the tree,
and the unlabelled side should be the left child. If a polygon X gets split, name the split polygons as X1 and X2 with X1

vertically on top of X2 in the scene.

a) (3 pts) Give the BSP tree with the single root node of polygon A, and sketch the entire scene with the addition of the
new cutting plane.

b) (3 pts) Same as above, building on the previous answer, after adding polygon B.

c) (2 pts) Same as above, building on the previous answer, after adding polygon C.

d) (2 pts) Same as above, building on the previous answer, after adding polygon D.

e) (7 pts) Traverse your BSP tree to produce a painter’s algorithm ordering from eye point V1. Show your work at each
step in the traversal, starting from the root of the BSP tree.

f) (7 pts) Same as above, instead using eye point V2.

marking
a) - d): One point deduction for each left/right-child swapped. One point deduction for not including entire scene in each
tree. Two points deduction if incorrectly separating polygons in each tree. Three points deduction if only showing the
final tree.

e), f): One point deduction if no order of drawing shown. For solution without intermediate steps, marking just based on
how the solution match the expected one.

Solution

7



e)

BSPtree(A)
v1 is on left-hand side of A plane:

near = A->left; far = A->right;
BSPtree(far): C2

v1 is on the left-hand side of C2:
near = C2->left; far = C2->right;

BSPtree(far): empty, back
draw C2
BSPtree(near): empty, back

draw A
BSPtree(A->left): B

v1 is on right-hand side of B:
near = B->right; far = B->left;

BSPtree(far): C1
v1 is on right-hand side of C1:

near = C1->right; far = C1->left;
BSPtree(far): empty, back
draw C1
BSPtree(near): D2

v1 is on right-hand side of D2:
near = D2->right; far = D2->left;

BSPtree(far): empty, back
draw D2
BSPtree(near): empty, back

draw B
BSPtree(near): D1

v1 is on right-hand side of D1:
near = D1->right; far = D1->left;

BSPtree(far): empty, back
draw D1
BSPtree(near): empty, back

The order of drawing is C2, A, C1, D2, B, D1

f)

BSPtree(A)
v2 is on left-hand side of A:

near = A->left; far = A->right;
BSPtree(far): C2

v2 is on the left-hand side of C2:
near = C2->left; far = C2->right;

BSPtree(far): empty, back
draw C2
BSPtree(near): empty, back

draw A
BSPtree(near): B

v2 is on left-hand side of B:
near = B->left; far = B->right;

BSPtree(far): D1
v2 is on left-hand side of D1:

near = D1->left; far = D1->right;
BSPtree(far): empty, back
draw D1
BSPtree(near): empty, back

8



draw B
BSPtree(near): C1

v2 is on right-hand side of C1:
near = C1->right; far = C1->left;

BSPtree(far): empty, back
draw C1
BSPtree(near): D2

v2 is on the left-hand side of D2:
near = D2->left; far = D2->right;

BSPtree(far): empty, back
draw D2
BSPtree(near): empty, back

The order of drawing is C2, A, D1, B, C1, D2

9



Textures (22 pts)

6. Texture Mapping

a) (20 pts) In the following figure, sketch the texture (top) as it would appear in each of the rectangles with the specified
texture coordinates. Assume the texture mode is gl.REPEAT.

(0,0) (1,0)

(1,1)(0,1)

Texture

Marking based on how your drawing match the solution: 1-2 pts deduction if minor mismatch; 3 pts deduction if repeat
mode is not considered.

a.(4 pts) b.(6 pts)

c.(4 pts) d.(6 pts)

b) (2 pts) Storing texture MIPMAP requires 33% additional space.

10



Ray Tracing (16 pts)

7. A ray R(t) begins at a known eyepoint E = (1, 2,−1), and travels in a direction V = (0, 0,−1) towards a given screen
pixel. In the scene, there is a sphere of radius r = 5 centered at the point (1,−1,−10).
a) (2 pts) Give the parametric equation of the ray R(t) in terms of parameter t.

b) (8 pts) Decide whether this ray will intersect with the sphere in the scene or not. If intersect, compute the intersection
point(s). Show your work.

c) (6 pts) Suppose we have another ray R′(t) begins at the same eyepoint E, and travels towards another screen pixel
in a direction V ′ = (3,−3,−13). After calculation, you find one of the intersection points with sphere to be P ′ =
(4,−1,−14). Compute the normal N ′ for the intersection point P ′. Then decide whether the point P ′ is on the backside
of the sphere from the eyepoint E.

Solution
a)

~R(t) = ~E + ~V · t =

 1
2
−1

+

 0
0
−1

 t (2)

No partial credits if incorrect.

b)

Sphere equation (2 pts):
(x− 1)2 + (y + 1)2 + (z + 10)2 = 25

Plug eqn(2) into the sphere equation and solve the quadratic equation in t to decide whether the ray intersects with the
sphere or not (4 pts):

(Rx − 1)2 + (Ry + 1)2 + (Rz + 10)2 = 25

(1− 1)2 + (2 + 1)2 + (−1− t+ 10)2 = 25

9 + (9− t)2 = 25

(9− t)2 = 16

9− t = ±4
t = 9± 4

since t = 5 or 13, there are two intersection points (2 pts):

P1 = (1, 2,−6)
P2 = (1, 2,−14)

c)

First we need to compute the normal of the intersection points (3 pts):

F (x, y, z) = (x− 1)2 + (y + 1)2 + (z + 10)2 − 25

~n(x, y, z) =

 2(x− 1)
2(y + 1)
2(z + 10)


~N ′(4,−1,−14) =

 6
0
−8



Normalizing the normals we get (though not necessary in this question):
11



~N ′ =
(6, 0,−8)
‖(6, 0,−8)‖

=

 .6
0
−.8



To decide whether it is on the back (2 pts):

~EP =
E − P ′

‖E − P ′‖
=

(1, 2,−1)− (4,−1,−14)
‖(1, 2,−1)− (4,−1,−14)‖

=

−3/√1873/
√
187

13/
√
187

 =

−.2194.2194
.9507


~EP · ~N ′ = −.8922 < 0

The dot product is less than 0 implies that the P ′ is on the back (1 pt).

12


