University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2013

Tamara Munzner

Math Review
guest lecture: James Gregson

Week 1, Wed Jan 2

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013

News

* usual lecture order switched

» math review today (Jan 2)
- James Gregson, TA
 usually second lecture
* course intro and overview Friday (Jan 4)
* Tamara Munzner, instructor
e usually first lecture

Notation: Scalars, Vectors, Matrices

* scalar d
* (lower case, italic)

* vector a =[a1 a, .. an:l
* (lower case, bold)

* matrix
* (upper case, bold) d,y dyp A

A=la, a, a,;

Vectors

 arrow: length and direction
» oriented segment in nD space

 offset / displacement

* location if given origin

Column vs. Row Vectors

° row vectors a__ =[a1 a, .. an]
o
 column vectors
a,
acol =
al’l

Vector-Vector Addition

 add: vector + vector = vector

* parallelogram rule
» tail to head, complete the triangle

geometric algebraic
u + V’ u, +v,

u+v=|u,+v,

u3 +V3

(3,2)+(6,4) =(9,6)

examples:
(2,5,1)+(3,1,-1) =(5,6,0)

Vector-Vector Subtraction

» subtract: vector - vector = vector U =V,

_M3 — Vs _

Vo (3,2)-(6,4) =(-3,-2)
(2,5.1) = (3,1,-1) = (~1,4,2)

Vector-Vector Subtraction

» subtract: vector - vector = vector U =V,

_M3 — Vs _

Vo (3,2)-(6,4) =(-3,-2)
(2,5.1) = (3,1,-1) = (~1,4,2)

u+(-v)

argument reversal

Scalar-Vector Multiplication

* multiply: scalar * vector = vector
* vector is scaled

““““ a*u=(a*u,a*u,,a*u,)

2%(3,2) = (6,4)
5%(2,5,1) = (1,2.5,.5)

Vector-Vector Multiplication

* multiply: vector * vector = scalar
» dot product, aka inner product uev

U, | * |V, =(”1*V1)+(u2*vz)+(u3*v3)

10

Vector-Vector Multiplication

* multiply: vector * vector = scalar
» dot product, aka inner product uev

(“1 W)"' (u2 *V,)"' (u3 >X<"3)

11

Vector-Vector Multiplication

* multiply: vector * vector = scalar
» dot product, aka inner product uev

u,|®v, =(u1*v1)+(u2*v2)+(u3*v3)

uev-= HuHHVHCOSH
* geometric interpretation

- lengths, angles u
* can find angle between two [
vectors vV

12

Dot Product Geometry

 can find lengt

uev=|ul

uHcosH =

n of projection of u onto v

HVHCOSH u .:

/0 |
uc®y —_— v
vl fulcos6

* as lines become perpendicular, u®v —

[

- ® 13

Dot Product Example

= (1, %v,) + (uy % v,) + (3 #v5)

=6*D+(1*7)+(2*3)=6+7+6=19

14

Vector-Vector Multiplication, The Sequel

* multiply: vector * vector = vector
e Cross product u, v, UV, — UV,

» algebraic _

Us | | V3] |WiVa TUY

15

Vector-Vector Multiplication, The Sequel

* multiply: vector * vector = vector
e Cross product u, v, UV, — UV,

- algebraic @} 4@ WV, — v,
< P<
0’ ‘% UV, UV

16

Vector-Vector Multiplication, The Sequel

* multiply: vector * vector = vector

e Cross product 3 [y, Vv, U,Vy — U5V,
* algebraic
g 1 Z/lz Vz = M3V1 — M1V3
2 U, V3 _ulv2 — UV]

blah blah 17

Vector-Vector Multiplication, The Sequel

* multiply: vector * vector = vector

 cross product U, Vv, U,vy — UV,
* algebraic _

_ U V UV, —U,v

- geometric < : S
axb

|axb] = [af||b|sin6

ax bl parallelogram

area] b
* axb perpendicular \
to parallelogram \\

18

RHS vs. LHS Coordinate Systems

* right-handed coordinate system convention

A

7 right hand rule:
index finger x, second finger vy;
'<>v right thumb points up
X
y Z=XXYy

* |left-handed coordinate system

left hand rule:
index finger x, second finger vy;
left thumb points down

Z=XXY

19

Basis Vectors

 take any two vectors that are linearly
iIndependent (nonzero and nonparallel)

e can use linear combination of these to define
any other vector:

c=wa+wb

20

Orthonormal Basis Vectors

* if basis vectors are orthonormal (orthogonal
(mutually perpendicular) and unit length)

» we have Cartesian coordinate system
 familiar Pythagorean definition of distance
A

orthonormal algebraic properties y

-

=l =1

X
X0y=0 /2)(__0_5\]
-
2X

Ix

21

Basis Vectors and Origins

* coordinate system: just basis vectors
 can only specify offset: vectors

» coordinate frame: basis vectors and origin
* can specify location as well as offset: points

P =0+xi+]

22

Working with Frames

P =0+xi+]

Gl 0
° _\-n

F

23

Working with Frames

P =0+xi+]

Gl 0
° _:n

F1 P = (3!'1)

24

Working with Frames

P =0+xi+]

F1 P = (3!'1)

25

Working with Frames

P =0+xi+]
JIF
0 i .p
_FZj I:1 p=(3a'1)
ilo

F,

26

Working with Frames

P =0+xi+]

F1 P= (3!'1)
F2 P= ('1 552)

27

Working with Frames

P =0+xi+]

P2 Fi p=(3,-1)

F2 P= ('1 552)

28

Working with Frames

i

P =0+xi+]

F1 P= (3!'1)
F2 P= ('1 552)
F3

29

Working with Frames

i

P =0+xi+]

I:1 P = (3!'1)
F2 P= ('1 552)
F3 p=(1,2)

30

Working with Frames

P =0+xi+)]

i/ Foop=(A)

47 Fz P = (-1 5,2)

Fsl0 F3 D= (1,2)

31

Named Coordinate Frames

- origin and basis vectors P =0+ax+Dy +cz

 pick canonical frame of reference
* then don’t have to store origin, basis vectors
* just p=(a,b,c)
» convention: Cartesian orthonormal one on
previous slide

* handy to specify others as needed
- airplane nose, looking over your shoulder, ...

* really common ones given names in CG
* object, world, camera, screen, ...

32

Lines

* slope-intercept form rY _0
cy=mx+Db

* implicit form
cy—-mx—-b=0
cAx+By+C=0
* f(x,y) =0

X=a

f(x,y) =y-mx-b
m = -b/a

33

Implicit Functions

 find where function is O
* plug in (x,y), check if
* 0: on line
* < (0: Inside
* > (: outside
* analogy: terrain
* sea level: =0

* altitude: function value

* topo map: equal-value
contours (level sets)

34

Implicit Circles
Sy =(x=x) +(y=-y.) -1
» circle is points (x,y) where f(x,y) =0
p=(xy)c=(x,y):(p-c)*(p-¢)-r =0
* points p on circle have property that vector
from ¢ to p dotted with itself has value r?

2 2
p—d‘—r = ()
* points points p on the circle have property
that squared distance from c to p is r?

p—d‘—r=0

* points p on circle are those a distance r from
center point ¢ 35

Parametric Curves

» parameter: index that changes continuously

* (X,y): point on curve
* 1. parameter
* vector form

* p=J)

0

y

g(1)

o)

36

p() =p, +1(P, —Py)
p()=0+1(d)

start at point py
go towards p,,
according to parametert

* p(0) = pgy, P(1) = P4

X

Y.

2D Parametric Lines

X, + 1(x, - xo)-

Yo+ 1Y = Yo)

Linear Interpolation

« parametric line is example of general concept
* P(t) =p, +1(P, —Py)
* Interpolation
* p goes throughaatt=0
* p goes through b at t =1
* linear
» weights t, (1-t) are linear polynomials in ¢

38

Matrix-Matrix Addition

 add: matrix + matrix = matrix

m

1My,

m,

My,

* example

1
2

3-
4

7

&
1

n, n,+nm

Ny | [Py Ty,

1+(-2) 3+35]
247 4 +1

Ny + 1My, |

n, +m,

1 &

9 5

39

Scalar-Matrix Multiplication

* multiply: scalar * matrix = matrix

m
d

My,

m,

2 R
a mg,

My,

* example

1

54

%K
a®m,

3%2 3*4

8

3*1 3%*5

0 -
am,,

*
a®my |

40

Matrix-Matrix Multiplication

 can only multiply (n,k) by (k,m):
number of left cols = number of right rows

* legal _ Th i
a b cl]|
j k
e f g
| - 1l m
» undefined - -
a b c]]
7 h 1
e
g ik
o p q|]

Matrix-Matrix Multiplication

* row by column

n, P

|21 P2 [Pa

P
P |

42

Matrix-Matrix Multiplication

* row by column
m, m,|[n,

my, My 1)

n,

My |

P P

) P |

P =myn, +mp,n,y,

Pr =My Ny + MyN,,

43

Matrix-Matrix Multiplication

* row by column
Pu | P2
P Px»

44

Matrix-Matrix Multiplication

* row by column
P2
P2

45

Matrix-Matrix Multiplication

* row by column
Pu P
P | P

P11 = My iy + My hy,

P = My Ny + M1y,
Pia = Myl +Myphy,
P = My lyy +Myhy,

e honcommutative: AB = BA

Matrix-Vector Multiplication

* points as column vectors: postmultiply

(x'] my My, My My, X

' _ [T My My My, y p' — Mp
z My My, Myy My || 2
n My My, My my||h

_ T T
[xv Yo h']=[x vy z h] My My My Ny, p — p M

47

Matrices

WA

® transpose my my, ms My my,
My My, My My, _ mp,
msy My, Miy Mgy m,

* identity

* inverse AA' =1
* not all matrices are invertible

48

Matrices and Linear Systems

* linear system of n equations, n unknowns
3x+7y+2z=4

2x—-4y-3z=-1
Sx+2y+z=1

* matrix form Ax=b

3 7 2 0x] [4]
2 -4 -3
5 2 1 ||z 1

Il
I
(W

Readings For Lecture

 FCG Chapter 2: Miscellaneous Math
« except 2.7 (2.11 in 2nd edition)

 FCG Chapter 5: Linear Algebra
» except 5.4 (not in 2nd edition)

50

