University of British Columbia
CPSC 314 Computer Graphics

Correction: W2V vs. V2W

Recorrection: Perspective Derivation
LR sign erro

Reading for This Module

Jan-Apr 2013 Y] TE 0 A Ofx] weEreac x=leﬁax’/w’ « FCG Chapter 10 Surface Shading
. = -1 R-1T-1 _ rioht — x' .
Myzn =My IR Vo F B ol yopyen xerism—xiw - FCG Section 8.2.4-8.2.5
Tamara Munzner uoougou O 0 0 -] [u u, wu |-ecu 2110 0 ¢ D|z g=Czep Y=lop=YIw=l
M vy 010 1 0 —¢ | |v, v, v |-eev wl 1o 0o =1 of1 We—z y=bottom—y'/w'=-1
view2world ~ w, w, w, 00 0 1 -e - w2 ow, ow, |-eew z=—near—>7'Iw' - RB Chap nghtlng
0O 0 O 1o 0 0 1 0o 0 0 z=—far—z7'|w'
ighti i | y _Fy+B: Fy+Bz Fy+B2
Lighting/Shading w u, u [emroe vu e VeEyeBe = tREEL 1S 1=
M _ V. ov,ov —e kv +-—e kV +—e kV, 1=FL+BL, l=FL—B, 12 top B,
vaw Woow W, e kW ke kW e kW, -z -z -z —(-near)
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013 000 ! 1-r10 _p
hnear
2 3 4
Rendering Pipeline Projective Rendering Pipeline Goal
« simulate interaction of light and objects
biect - fast: fake it!
object .) . .
Geometry | |Model/View| Lighti Perspectiv Cliopi ocs va2c approximate the look, ignore real physics
Database Transform. ighting Transform. 'PPing

~ projection
transformation

modeling

viewing
transformation i

tr

clipping

get the physics (more) right
+ BRDFs: Bidirectional Reflection Distribution Functions
local model: interaction of each object with light

: f : ; ccCs
Lighting | OCS - objectimodel coordinate system perspective + global model: interaction of objects with each other
Scan . Depth . Frame- WCS - world coordinate system lized
Conversion| | Texturing Ter;t H Blrting buffer o) ivide no(;me! ize
VCS - viewing/cameraleye coordinate N2D evice
system NDCS
_ elinpi . viewport
CCS - clipping coordinate system transformation
NDgSst—epnormalized device coordinate device
Y DCS
5 A DCSSy;tcésr:r\‘/ice/displaylscreen coordinate ; s
Photorealistic lllumination lllumination in the Pipeline Light Sources Light Sources
transport o'f energy Trom Iigth ss)urcgs tq surfaces & points + |local illumination . types of |ight sources - area Iights
«global includes direct and indirect illumination — more later . only models Iight arriving directly from Iight . gl'quht.fv(GL_LIGETO,GL_P.OSITION,lxght[]) . Iight sources with a finite area
source * directional/parallel lights » st del of liaht
. . . _li . X * more realistic model of many li sources
- no interreflections or shadows real-life example: sun y 19

[electricimage.com]

Henrik Wann Jensen

« can be added through tricks, multiple
rendering passes

« light sources
 simple shapes
* materials
 simple, non-physical reflection models

« infinitely far source: homogeneous coord w=0

* point lights
» same intensity in all directions *
« spot lights ;
1

« limited set of directions:

+ point+direction+cutoff angle N

_— 11

B

 not available with projective rendering pipeline
(i.e., not available with OpenGL)

Light Sources

» ambient lights
= no identifiable source or direction
« hack for replacing true global illumination

« (diffuse interreflection: light bouncing off from
other objects)

N

— o Ye—

Diffuse Interreflection

F

Ambient Light Sources

« scene lit only with an ambient light source

Light Position
Not Important

Viewer Position|
Not Important

Surface Angle
Not Important

Directional Light Sources

« scene lit with directional and ambient light

Light Position
Not Important

Surface Angle
Important

Viewer Position|
Not Important

Point Light Sources

« scene lit with ambient and point light source

Light Position
Important

Viewer Position|
Important

Surface Angle
Important

Light Sources

» geometry: positions and directions
« standard: world coordinate system
- effect: lights fixed wrt world geometry
« demo:
http://www.xmission.com/~nate/tutors.html

« alternative: camera coordinate system
« effect: lights attached to camera (car headlights)

« points and directions undergo normal model/
view transformation

« illumination calculations: camera coords

Types of Reflection

specular (a.k.a. mirror or regular) reflection causes

light to propagate without scattering. >‘4

diffuse reflection sends light in all directions with

equal energy.

mixed reflection is a weighted
combination of specular and diffuse.

Specular Highlights

20

Types of Reflection

« retro-reflection occurs when incident energy
reflects in directions close to the incident
direction, for a wide range of incident

directions. B_\

« gloss is the property of a material surface
that involves mixed reflection and is
responsible for the mirror like appearance of

rough surfaces.

21

Reflectance Distribution Model

» most surfaces exhibit complex reflectances
« vary with incident and reflected directions.
» model with combination

specular + glossy + diffuse =
reflectance distribution

Surface Roughness

- at a microscopic scale, all
real surfaces are rough

~T—N\

« cast shadows on
themselves ‘ ~/j//

shadow shadow

- “mask” reflected light:

asked Light

23

Surface Roughness

S

< notice another effect of roughness:
« each “microfacet” is treated as a perfect mirror.
« incident light reflected in different directions by
different facets.
« end result is mixed reflectance.
« smoother surfaces are more specular or glossy.

« random distribution of facet normals results in diffuse
reflectance.

Physics of Diffuse Reflection

* ideal diffuse reflection
« very rough surface at the microscopic level
« real-world example: chalk

* microscopic variations mean incoming ray of
light equally likely to be reflected in any
direction over the hemisphere

+ what does the reflected intensity depend on?

oS

25

Lambert’ s Cosine Law

« ideal diffuse surface reflection

the energy reflected by a small portion of a surface from a light source
in a given direction is proportional to the cosine of the angle between
that direction and the surface normal

« reflected intensity

+ independent of viewing direction

+ depends on surface orientation wrt light
« often called Lambertian surfaces

Lambert’ s Law

Lambert's Cosine Law

intuitively: cross-sectional area of
the “beam” intersecting an element
of surface area is smaller for greater
angles with the normal.

Computing Diffuse Reflection

« depends on angle of incidence: angle between surface
normal and incoming light

* Liiffuse = Kd light €08 0 ! "

« in practice use vector arithmetic
* Ldiffuse = Kd Tight (0 * D

« always normalize vectors used in lighting!!!
= n, 1should be unit vectors

« scalar (B/W intensity) or 3-tuple or 4-tuple (color)
kg diffuse coefficient, surface color

* lignt incoming light intensity

* lyiuse: OUtgoing light intensity (for diffuse reflection)

28

Diffuse Lighting Examples

» Lambertian sphere from several lighting
angles:

* need only consider angles from 0° to 90°
* why?

= demo: Brown exploratory on reflection
< http://w ‘r brown. i

pository/edu/brown/cs/
ion_2d_java_browser.html

Specular Highlights

Michiel van de Panne *©

Physics of Specular Reflection
« at the microscopic level a specular reflecting
surface is very smooth

« thus rays of light are likely to bounce off the
microgeometry in a mirror-like fashion

 the smoother the surface, the closer it
becomes to a perfect mirror

Optics of Reflection

- reflection follows Snell’s Law:

= incoming ray and reflected ray lie in a plane
with the surface normal

« angle the reflected ray forms with surface
normal equals angle formed by incoming ray
and surface normal

n

I 7
8 e(l)ight = e(r)eﬂeclion

Non-ldeal Specular Reflectance

Snell’ s law applies to perfect mirror-like surfaces,
but aside from mirrors (and chrome) few surfaces
exhibit perfect specularity

how can we capture the “softer” reflections of
surface that are glossy, not mirror-like?

one option: model the microgeometry of the
surface and explicitly bounce rays off of it

. or..

Empirical Approximation

» we expect most reflected light to travel in
direction predicted by Snell’ s Law

» but because of microscopic surface
variations, some light may be reflected in a
direction slightly off the ideal reflected ray

+ as angle from ideal reflected ray increases,
we expect less light to be reflected

Empirical Approximation

+ angular falloff

n

* how might we model this falloff?

Phong Lighting

» most common lighting model in computer
graphics
* (Phong Bui-Tuong, 1975)

I =KLy, (cos @) s

specular
* Ny © PUTEly empirical l_
constant, varies rate of falloff

* kg specular coefficient,
highlight color

* no physical basis, works

ok in practice

36

Phong Lighting: The n,;,, Term

« Phong reflectance term drops off with divergence of viewing angle from
ideal reflected ray

Viewing angle — reflected angle

Phong Examples

varying |

varying Nshiny

99000

Calculating Phong Lighting

- compute cosine term of Phong lighting with vectors

I =K g (V© r)nmmy

+ v: unit vector towards viewer/eye 7
« r:ideal reflectance direction (unit vector) 7 /“
8,

specular

hl

<D

* kg specular component
« highlight color
* lign: incoming light intensity

« how to efficiently calculate r ?

Calculating R Vector

P =Ncos 6 |L| |N|] projection of L onto N
P=Ncos 6 L, N are unit length
P=N(N-L)

40

Calculating R Vector

P=Ncos 6 |L| N] projection of L onto N
P=Ncos 6 L, N are unit length
P=N(N-L)

2P=R+L
2P-L=R
2(N(N-L))-L=R

Phong Lighting Model

« combine ambient, diffuse, specular components

#lights
nru’n
L = KoLpen + 2 LKMo 1) 4k (vor))
i=1
= commonly called Phong lighting
+ once per light
+ once per color component

« reminder: normalize your vectors when calculating!

» normalize all vectors: n,l,r,v
42

Phong Lighting: Intensity Plots

Phong| Pumpient

Ppecular Pootat

e N\ | b
&>

=60

43

Blinn-Phong Model

« variation with better physical interpretation
+ Jim Blinn, 1977 n..
1,.(x)=1,(x)k,(h*n) iy y - with h = (1+ v) /2

« h: halfway vector
« h must also be explicitly normalized: h / |h|
« highlight occurs when h near n

* MY

Light Source Falloff

* quadratic falloff

« brightness of objects depends on power per
unit area that hits the object

= the power per unit area for a point or spot light
decreases quadratically with distance

Area 4nur?

Area 4n(2r)?
45

Light Source Falloff

* non-quadratic falloff

» many systems allow for other falloffs
allows for faking effect of area light sources
OpenGL / graphics hardware

« 1,: intensity of light source

« x: object point

« 1: distance of light from x

1

ar’ +br+c

I,(x)=

Ly

Lighting Review

* lighting models
« ambient
« normals don’t matter
» Lambert/diffuse
« angle between surface normal and light
» Phong/specular
« surface normal, light, and viewpoint

47

Lighting in OpenGL

« light source: amount of RGB light emitted
« value represents percentage of full intensity
e.g., (1.0,0.5,0.5)
. Ievr?ry light source emits ambient, diffuse, and specular
ight
» materials: amount of RGB light reflected
« value represents percentage reflected
e.g., (0.0,1.0,0.5)
* interaction: multiply components
- red light (1,0,0) x green surface (0,1,0) = black (0,0,0)

48

Lighting in OpenGL
glLightfv(GL_LIGHTO, GL_AMBIENT, amb_light_rgba);
¢lLightfv(GL_LIGHTO, GL_DIFFUSE, dif light rgba);
¢lLightfv(GL_LIGHTO0, GL_SPECULAR, spec_light_rgba);
glLightfv(GL_LIGHTO, GL_POSITION, position);
glEnable(GL_LIGHTO);
gIMaterialfv(GL_FRONT, GL_AMBIENT, ambient_rgba);
gIMaterialfv(GL_FRONT, GL_DIFFUSE, diffuse_rgba);
gIMaterialfv(GL_FRONT, GL_SPECULAR, specular_rgba);
gIMaterialfv(GL_FRONT, GL_SHININESS, n);

+ warning: glMaterial is expensive and tricky
« use cheap and simple glColor when possible
+ see OpenGL Pitfall #14 from Kilgard’s list
hitp://www.openg] features/Kilgard Techni Ipitfall/

49

Shading

Lighting vs. Shading

« lighting

« process of computing the luminous intensity
(i.e., outgoing light) at a particular 3-D point,
usually on a surface

 shading

« the process of assigning colors to pixels

* (why the distinction?) / E
o |

Applying lllumination

» we now have an illumination model for a point
on a surface

if surface defined as mesh of polygonal facets,
which points should we use?
- fairly expensive calculation

- several possible answers, each with different
implications for visual quality of result

Applying lllumination

« polygonal/triangular models
- each facet has a constant surface normal

« if light is directional, diffuse reflectance is
constant across the facet

* why?

Flat Shading

» simplest approach calculates illumination at a
single point for each polygon

« obviously inaccurate for smooth surfaces

Flat Shading Approximations

« if an object really is faceted, is this

accurate?
* no!
« for point sources, the direction to light

varies across the facet

—
« for specular reflectance, direction to .
eye varies across the facet
—_—

Improving Flat Shading

+ what if evaluate Phong lighting model at each pixel
of the polygon?

« better, but result still clearly faceted

« for smoother-looking surfaces
we introduce vertex normals at each
vertex
« usually different from facet normal
« used only for shading
« think of as a better approximation of the real surface
that the polygons approximate

Vertex Normals

* vertex normals may be
« provided with the model
» computed from first principles

* approximated by
averaging the normals
of the facets that
share the vertex

Gouraud Shading

+ most common approach, and what OpenGL does
« perform Phong lighting at the vertices
« linearly interpolate the resulting colors over faces
- along edges
« along scanlines
edge: mix of ¢, ¢,

does this eliminate the facets? ., .

interior: mix of ¢7, ¢2, c3
edge: mix of ¢1, ¢3
58

Gouraud Shading Artifacts

- often appears dull, chalky
« lacks accurate specular component

« if included, will be averaged over entire
polygon

c, this vertex shading spread

this interior shading missed! over too much area 59

Gouraud Shading Artifacts

» Mach bands
« eye enhances discontinuity in first derivative
= very disturbing, especially for highlights

60

Gouraud Shading Artifacts
» Mach bands

Discontinuity in rate
of color change
occurs here

61

Gouraud Shading Artifacts

* perspective transformations

- affine combinations only invariant under affine,
not under perspective transformations

« thus, perspective projection alters the linear
interpolation!

Gouraud Shading Artifacts

« perspective transformation problem

colors slightly “swim” on the surface as objects move
relative to the camera

usually ignored since often only small difference

« usually smaller than changes from lighting variations
to do it right

« either shading in object space

« or correction for perspective foreshortening

« expensive — thus hardly ever done for colors

Phong Shading

« linearly interpolating surface normal across the facet,
applying Phong lighting model at every pixel
+ same input as Gouraud shading
« pro: much smoother results
« con: considerably more expensive

« not the same as Phong lighting
+ common confusion

« Phong lighting: empirical model to calculate illum2
a point on a surface

Phong Shading

« linearly interpolate the vertex normals
» compute lighting equations at each pixel
* can use specular component
#lights

Imml = kuIambient + E Ii(kd (n. ll) + kx(v Ry)MMW)
N, i=

remember: normals used in
diffuse and specular terms

discontinuity in normal’ s rate of
N change harder to detect

2
65

Phong Shading Difficulties

» computationally expensive

« per-pixel vector normalization and lighting
computation!

« floating point operations required

« lighting after perspective projection
» messes up the angles between vectors
 have to keep eye-space vectors around

* no direct support in pipeline hardware
* but can be simulated with texture mapping
- stay tuned for modern hardware: shaders

66

Shading Artifacts: Silhouettes

« polygonal silhouettes remain

Gouraud Phong

Shading Artifacts: Orientation

« interpolation dependent on polygon orientation

« view dependence!
B
(o] Q
A
D

A
Rotate -90°
and color
same point
B D
—
C
Interpolate between Interpolate between
AB and AD CD and AD
68

Shading Artifacts: Shared Vertices

vertex B shared by two rectangles
on the right, but not by the one on
the left

D C-H
first portion of the scanline
-G is interpolated between DE and AC
. second portion of the scanline
is interpolated between BC and GH
E A F

a large discontinuity could arise

69

Shading Models Summary

« flat shading
» compute Phong lighting once for entire
polygon
» Gouraud shading
» compute Phong lighting at the vertices and
interpolate lighting values across polygon
» Phong shading
» compute averaged vertex normals
« interpolate normals across polygon and
perform Phong lighting across polygon

Shutterbug: Flat Shading

Shutterbug: Gouraud Shading

72

Shutterbug: Phong Shading

73

Non-Photorealistic Shading

' 1+n-1
« cool-to-warm shading k, = ——

c=kc

+(-k,)c,

n

n
s
k)
- —
"-—
T

" -
B | |
"

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html

74

Non-Photorealistic Shading

« draw silhouettes: if (e-n,)(e-n,) <0, e=edge-eye vector
« draw creases: if (n,-n,) < threshold

U

—
—

T

L

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html 75

Computing Normals

* per-vertex normals by interpolating per-facet
normals
» OpenGL supports both

+ computing normal for a polygon

76

Computing Normals

 per-vertex normals by interpolating per-facet
normals

» OpenGL supports both
« computing normal for a polygon
« three points form two vectors

77

Computing Normals

< per-vertex normals by interpolating per-facet normals
« OpenGL supports both
« computing normal for a polygon
« three points form two vectors
« cross: normal of plane
gives direction
* normalize to unit length! (a-b) x (c-b)
« which side is up?
« convention: points in
counterclockwise
order

Specifying Normals

* OpenGL state machine
« uses last normal specified
« if no normals specified, assumes all identical

* per-vertex normals
gINormal3f(1,1,1);
glVertex3f(3,4,5);
gINormal3f(1,1,0);
glVertex3f(10,5,2);

+ per-face normals
gINormal3f(1,1,1);
glVertex3f(3,4,5);
glVertex3f(10,5,2);

