University of British Columb.ia Correction: W2V vs. V2W
CPSC 314 Computer Graphlcs Islide 26, Viewing]
Jan-Apr 2013
* Myow=(Myy) '-RT
Tamara Munzner u, u, u, Of1 0 0 -e| [u, u, u |-ecu
e vy oo 1 0 —e,| |V, v, Vv, |-e°V
view2world ~ woow,ow, 00 0 1 -e, B woow, W, |-e*w
0O 0 0 10 0 0 1 0O 0 O T
nghtlng/Shadlng W, ou,ou, | —e Fu +—e Fu +—e Fu,
1% 1% v —e %V +—-e *V +—-e_*V
M — X y z X X y y Z z
V2W lw, W, w,_ |-e Ew +-e EW +-e FW,
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013 0 00 !
2
Recorrection: Perspective Derivation Reading for This Module
[slide 91, Viewing] IL/R sign error] |
X1 [E 0 A Ofx Y= Ex+ Ay X=lefi—=x/w-1 * FCG Chapter 10 Surface Shading
YI_[0 F B Oyl y=Fysp *=rightmxiwlsl - FCG Section 8.2.4-8.2.5
4 0 0 C D|z 7=Cz+D y=top—>y'/w'=1
wl lo o =1 ol1 W= —z y = bottom —y'/w'=-1
z=-near =z /w'E-1 « RB Chap Lighting
z=—far—7 /w4l
|zaxisfli9!
y'= Fy + Bz L"=Fy+|BZ, 1=Fy;'32, 1= By+ BT
w w -z
1=Fr2 4B, 1=F2_B 1-F P _p
-z -z -z —(-near)
1-F P _p
near
3 4

Rendering Pipeline

Geometry

Model/View

kPerspectiv

)

Database Transform. || | Lighting |- Transform Clipping F‘
Lighting |
S . Depth . Frame-
Convceirs‘ioni_\ M2l | 'ﬁ:;t —| Blending buffer
5 6
Projective Rendering Pipeline Goal

object world viewing
ocs 9?W \ wes/ W2V _ vecs J V2C
_,| modeling viewing projection
transformation transformation transformation clipping
OCS - object/model coordinate system C2N CCS
perspective
WCS - world coordinate system divide |normalized
VCS - viewing/camera/eye coordinate device
system g y N2D NDCS
- cliopi i viewport
CCS - clipping coordinate system transformation
NDCS - normalized device coordinate l device
system DCS

DCS - device/display/screen coordinate
system

« simulate interaction of light and objects

« fast: fake it!

« approximate the look, ignore real physics
+ get the physics (more) right
+ BRDFs: Bidirectional Reflection Distribution Functions
 local model: interaction of each object with light
+ global model: interaction of objects with each other

Photorealistic lllumination lllumination in the Pipeline

stransport of energy from light sources to surfaces & points e Jocal illumination

global includes direct and indirect illumination — more later . onIy models Iight arriving directly from Iight

source
* no interreflections or shadows

[electricimage.com] can be added through tricks, multiple
rendering passes

* light sources
» simple shapes
* materials
« simple, non-physical reflection models

Henrik Wann Jensen

Light Sources Light Sources

* types of light sources * area lights
* glLightfv(GL LIGHTO,GL POSITION,light[]) . . .
T . * light sources with a finite area
« directional/parallel lights o _
- real-life example: sun « more realistic model of many light sources

- infinitely far source: homogeneous coord w=0 * not available with projective rendering pipeline
- point lights (i.e., not available with OpenGL)

* same intensity in all directions
* spot lights

* limited set of directions:

« point+direction+cutoff angle N

Light Sources Diffuse Interreflection

« ambient lights
* no identifiable source or direction
* hack for replacing true global illumination

« (diffuse interreflection: light bouncing off from
other objects)

Ambient Light Sources Directional Light Sources

* scene lit only with an ambient light source * scene lit with directional and ambient light

Light Position
Not Important

Light Position

Viewer Position s - | Not Important
Not Important Surface Angle

Important

Viewer Position

Surface Angle Not Important
Not Important

Point Light Sources Light Sources

o _ o * geometry: positions and directions
* scene lit with ambient and point light source - standard: world coordinate system

« effect: lights fixed wrt world geometry
Light Position ¢ demo:
e http://www.xmission.com/~nate/tutors.html

* alternative: camera coordinate system
Viewer Position - effect: lights attached to camera (car headlights)

Important . . .
 points and directions undergo normal model/
view transformation

Surface Angle o i] i] .
Important illumination calculations: camera coords

Types of Reflection Specular Highlights

» specular (a.k.a. mirror or regular) reflection causes

light to propagate without scattering.

« diffuse reflection sends light in all directions with
equal energy.
* mixed reflection is a weighted

combination of specular and diffuse. M

Types of Reflection

* retro-reflection occurs when incident energy
reflects in directions close to the incident
direction, for a wide range of incident

>~

 gloss is the property of a material surface
that involves mixed reflection and is

directions.

responsible for the mirror like appearance of

N

rough surfaces.

21

Reflectance Distribution Model

» most surfaces exhibit complex reflectances
+ vary with incident and reflected directions.
* model with combination

NN N X

specular + glossy + diffuse =
reflectance distribution

22

Surface Roughness

« at a microscopic scale, all
real surfaces are rough

» cast shadows on
themselves

« “mask” reflected light:

shadow

\

A

shadow

asked Light

23

Surface Roughness

\\/vﬁf\

* notice another effect of roughness:
» each “microfacet” is treated as a perfect mirror.

* incident light reflected in different directions by
different facets.

* end result is mixed reflectance.
* smoother surfaces are more specular or glossy.

* random distribution of facet normals results in diffuse
reflectance.

24

Physics of Diffuse Reflection

* ideal diffuse reflection
* very rough surface at the microscopic level
* real-world example: chalk

* microscopic variations mean incoming ray of
light equally likely to be reflected in any
direction over the hemisphere

» what does the reflected intensity depend on?

W Ne—

25

Lambert’ s Cosine Law

* ideal diffuse surface reflection

the energy reflected by a small portion of a surface from a light source
in a given direction is proportional to the cosine of the angle between
that direction and the surface normal

* reflected intensity

* independent of viewing direction

+ depends on surface orientation wrt light
- often called Lambertian surfaces

26

Lambert’ s Law

Lambert's Cosine Law

osine Law: Eg = E * cos|
00

intuitively: cross-sectional area of
the “beam” intersecting an element
of surface area is smaller for greater
angles with the normal.

Computing Diffuse Reflection

* depends on angle of incidence: angle between surface
normal and incoming light

Liiffuse = Kd light €08 6 ! "

* in practice use vector arithmetic
Lgiffuse = Kd Tlight M D

» always normalize vectors used in lighting!!!
n, 1should be unit vectors

* scalar (B/W intensity) or 3-tuple or 4-tuple (color)
kg4 diffuse coefficient, surface color
lignt: incoming light intensity
lyiruse: OUtgoing light intensity (for diffuse reflection)

28

Diffuse Lighting Examples

» Lambertian sphere from several lighting
angles:

* need only consider angles from 0° to 90°
* why?
« demo: Brown exploratory on reflection

+ http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/
exploratories/applets/reflection2D/reflection_2d_java_browser.html

Specular Highlights

Michiel van de Panne

Physics of Specular Reflection

« at the microscopic level a specular reflecting
surface is very smooth

* thus rays of light are likely to bounce off the
microgeometry in a mirror-like fashion

* the smoother the surface, the closer it
becomes to a perfect mirror

Optics of Reflection

- reflection follows Snell’s Law:

 incoming ray and reflected ray lie in a plane
with the surface normal

 angle the reflected ray forms with surface
normal equals angle formed by incoming ray
and surface normal

6(l)ight - 6(r)eﬂection

Non-ldeal Specular Reflectance

« Snell’ s law applies to perfect mirror-like surfaces,
but aside from mirrors (and chrome) few surfaces
exhibit perfect specularity

* how can we capture the “softer” reflections of
surface that are glossy, not mirror-like?

« one option: model the microgeometry of the
surface and explicitly bounce rays off of it

e Or...

Empirical Approximation

« we expect most reflected light to travel in
direction predicted by Snell’ s Law

* but because of microscopic surface
variations, some light may be reflected in a
direction slightly off the ideal reflected ray

 as angle from ideal reflected ray increases,
we expect less light to be reflected

34

Empirical Approximation

« angular falloff

n

!

™

* how might we model this falloff?

35

Phong Lighting

« most common lighting model in computer
graphics
* (Phong Bui-Tuong, 1975)

Ispecular = ksIlight (COS ¢) iy ﬁ q
* Ngyiny * PUrely empirical I— p /Y
constant, varies rate of falloff)

* ks specular coefficient, /97 P
highlight color

* no physical basis, works
ok in practice

™

36

Phong Lighting: The ng,;, Term Phong Examples

* Phong reflectance term drops off with divergence of viewing angle from

ideal reflected ray varying |

varying n

shiny

99000

Viewing angle — reflected angle

37 38

Calculating Phong Lighting Calculating R Vector
« compute cosine term of Phong lighting with vectors P=Ncos6|L|IN| projection O_f LontoN
" P=NcosH L, N are unit length
shin -— .
Ispecular = ksIlight (V * l') ’ P=N (N-L)

« v: unit vector towards viewer/eye R

+ r: ideal reflectance direction (unit vector) j R V =

* kg specular component ﬁl‘ {’ N
* highlight color

. I”ght: incoming light intensity

n

* how to efficiently calculate r ?

39 40

Calculating R Vector

P=Ncos6|L||N| projectionof LontoN
P=NcosH L, N are unit length

P=N(N-L)

2P=R+L
2P-L=R
2(N(N-L))-L=R

41

Phong Lighting Model

» combine ambient, diffuse, specular components

#lights nShiny
Itotal = kaIambient + Eli(kd (n ¢ ll) + ks(V ¢ ri))
i=1
- commonly called Phong lighting
+ once per light
 once per color component

* reminder: normalize your vectors when calculating!

* normalize all vectors: n,l,r,v
42

Phong Lighting: Intensity Plots

Phong pxmhienl

pspu:ul:r ploml

b

= 60°

pI [
¢,= 251
e

.
\

43

Blinn-Phong Model

- variation with better physical interpretation
» Jim Blinn, 1977 n..
I (x)=1 (x)(k,(hen) "™);withh=(1+v)/2

* h: halfway vector
* h must also be explicitly normalized: h / |h|
* highlight occurs when h near n

. AN
1\

44

Light Source Falloff

* quadratic falloff

* brightness of objects depends on power per
unit area that hits the object

 the power per unit area for a point or spot light
decreases quadratically with distance

Area 4mr?

Area 4n(2r)?
45

Light Source Falloff

* non-quadratic falloff
* many systems allow for other falloffs
- allows for faking effect of area light sources
* OpenGL / graphics hardware
« 1, intensity of light source
* x: object point
» r: distance of light from x

1
[(x)= -/
n (X) ar> +br+c

46

Lighting Review

* lighting models
* ambient
* normals don’t matter
* Lambert/diffuse
* angle between surface normal and light

* Phong/specular
« surface normal, light, and viewpoint

47

Lighting in OpenGL

« light source: amount of RGB light emitted
* value represents percentage of full intensity
e.g., (1.0,0.5,0.5)
. Ievr?ry light source emits ambient, diffuse, and specular
ight
* materials: amount of RGB light reflected
* value represents percentage reflected
e.g., (0.0,1.0,0.5)
* interaction: multiply components
* red light (1,0,0) x green surface (0,1,0) = black (0,0,0)

48

Lighting in OpenGL

glLightfv(GL_LIGHTO, GL_ AMBIENT, amb_light rgba);
glLightfv(GL_LIGHTO, GL_DIFFUSE, dif light rgba);
glLighttv(GL _LIGHTO, GL_SPECULAR, spec_light rgba);
glLighttv(GL_LIGHTO, GL_POSITION, position);
glEnable(GL_LIGHTO);

glMaterialfv(GL_FRONT, GL_AMBIENT, ambient rgba);
glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuse rgba);
glMaterialfv(GL_FRONT, GL_SPECULAR, specular rgba);
glMaterialfv(GL_FRONT, GL_SHININESS, n);

« warning: glMaterial is expensive and tricky
 use cheap and simple glColor when possible

+ see OpenGL Pitfall #14 from Kilgard’s list
http://www.opengl.org/resources/features/Kilgard Techniques/oglpitfall/

49

Shading

50

Lighting vs. Shading

* lighting

 process of computing the luminous intensity
(i.e., outgoing light) at a particular 3-D point,
usually on a surface

* shading
+ the process of assigning colors to pixels

* (why the distinction?) / E
@
u}

51

Applying lllumination

« we now have an illumination model for a point
on a surface

« if surface defined as mesh of polygonal facets,
which points should we use?

- fairly expensive calculation

* several possible answers, each with different
implications for visual quality of result

52

Applying lllumination

 polygonal/triangular models
+ each facet has a constant surface normal
« if light is directional, diffuse reflectance is

constant across the facet
* why?

53

Flat Shading

« simplest approach calculates illumination at a
single point for each polygon

 obviously inaccurate for smooth surfaces

54

Flat Shading Approximations

4

if an object really is faceted, is this
accurate?
no!

» for point sources, the direction to light
varies across the facet

» for specular reflectance, direction to
eye varies across the facet

55

Improving Flat Shading

« what if evaluate Phong lighting model at each pixel
of the polygon?
* better, but result still clearly faceted

 for smoother-looking surfaces
we introduce vertex normals at each
vertex
+ usually different from facet normal
* used only for shading

+ think of as a better approximation of the real surface
that the polygons approximate

56

Vertex Normals Gouraud Shading

vertex'norme.lls may be * most common approach, and what OpenGL does
* provided with the model - perform Phong lighting at the vertices

. Computed from first principles + linearly interpolate the resulting colors over faces
» along edges

* approximated by + along scanlines
averaging the normals

of the facets that does this eliminate the facets?
share the vertex :

edge: mix of ¢4, ¢,

interior: mix of ¢1, ¢2, ¢3

edge: mix of ¢1, ¢3
58

Gouraud Shading Artifacts Gouraud Shading Artifacts

- often appears dull, chalky « Mach bands
* |lacks accurate Specular Component ° eye enhances discontinUity in first derivative
- if included, will be averaged over entire » very disturbing, especially for highlights

polygon

C, this vertex shading spread
this interior shading missed! over too much area 59

Gouraud Shading Artifacts
* Mach bands

Discontinuity in rate
of color change
occurs here

Gouraud Shading Artifacts

* perspective transformations

« affine combinations only invariant under affine,
not under perspective transformations

* thus, perspective projection alters the linear
interpolation!

Gouraud Shading Artifacts

* perspective transformation problem
« colors slightly “swim” on the surface as objects move
relative to the camera

« usually ignored since often only small difference
+ usually smaller than changes from lighting variations

+ to do it right
+ either shading in object space
« or correction for perspective foreshortening
» expensive — thus hardly ever done for colors

Phong Shading

+ linearly interpolating surface normal across the facet,
applying Phong lighting model at every pixel
* same input as Gouraud shading
* pro: much smoother results
» con: considerably more expensive

* not the same as Phong lighting
* common confusion

Phong lighting: empirical model to calculate |Ilum
a point on a surface

Phong Shading

* linearly interpolate the vertex normals
« compute lighting equations at each pixel
 can use specular component

#lights

= ol + 3 (ks (071) v
N, i=1

remember: normals used in
diffuse and specular terms

discontinuity in normal’ s rate of
change harder to detect

65

Phong Shading Difficulties

computationally expensive

* per-pixel vector normalization and lighting
computation!

« floating point operations required

lighting after perspective projection

* messes up the angles between vectors

* have to keep eye-space vectors around
no direct support in pipeline hardware

* but can be simulated with texture mapping
« stay tuned for modern hardware: shaders

66

Shading Artifacts: Silhouettes

 polygonal silhouettes remain

Gouraud Phong

67

Shading Artifacts: Orientation

interpolation dependent on polygon orientation
* view dependence!

A
Rotate -90° B
and color
same point C
——
D
C

Interpolate between Interpolate between
AB and AD CD and AD

68

Shading Artifacts: Shared Vertices

vertex B shared by two rectangles
on the right, but not by the one on
H the left

first portion of the scanline
is interpolated between DE and AC

second portion of the scanline
is interpolated between BC and GH

a large discontinuity could arise

69

Shading Models Summary

« flat shading
« compute Phong lighting once for entire
polygon
» Gouraud shading

< compute Phong lighting at the vertices and
interpolate lighting values across polygon

* Phong shading
* compute averaged vertex normals

* interpolate normals across polygon and
perform Phong lighting across polygon

70

Shutterbug: Flat Shading

9

71

Shutterbug: Gouraud Shading

72

Shutterbug: Phong Shading Non-Photorealistic Shading

. 1+n-1
» cool-to-warm shading &, = +2" c=ke, +(1-k)c,

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html 74

Non-Photorealistic Shading Computing Normals

« draw silhouettes: if (e-n,)(e-n,) <0, e=edge-eye vector + per-vertex normals by interpolating per-facet

- draw creases: if (n,-n,) = threshold normals
* OpenGL supports both

« computing normal for a polygon

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html 75

Computing Normals Computing Normals

per-vertex normals by interpolating per-facet - per-vertex normals by interpolating per-facet normals
normals + OpenGL supports both

« OpenGL supports both + computing normal for a polygon

. « th ints f
computing normal for a polygon three 'pomts orm two vectors
 cross: normal of plane

+ three points form two vectors gives direction
normalize to unit length! (a-b) x (c-b)

which side is up?
= convention: points in C c-b
counterclockwise b
order

Specifying Normals

OpenGL state machine
- uses last normal specified

* if no normals specified, assumes all identical

per-vertex normals
glNormal31(1,1,1);
glVertex31(3,4,5);
glNormal3f(1,1,0);
glVertex31(10,5,2);
per-face normals
glNormal3f(1,1,1);
glVertex31(3.,4,5);
glVertex31(10,5,2);

79

