University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2013

Tamara Munzner

Hidden Surfaces

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013

Clarification: Blinn-Phong Model

 only change vs Phong model is to have the specular
calculation to use (h*n) instead of (Ver)

« full Blinn-Phong lighting model equation has

ambient, diffuse, specular terms
#lights

Itotal = kaIambient + 211 (kd (n ° ll) + ks(n * hi)nshiny)
i=1

» just like full Phong model equation
#lights

Itotal = kaIambient + 211 (kd (Il ° 11) + ks(v * ri)nshiny)
i=1

2

Reading for Hidden Surfaces

 FCG Sect 8.2.3 Z-Buffer

« FCG Sect 12.4 BSP Trees
* (8.1, 8.2 2nd ed)

 FCG Sect 3.4 Alpha Compositing
« (N/A 2M ed)

Hidden Surface Removal

Occlusion

 for most interesting scenes, some polygons

overlap
= @&

 to render the correct image, we need to
determine which polygons occlude which

Painter’ s Algorithm

» simple: render the polygons from back to
front, “painting over” previous polygons

= Q&

- draw blue, then green, then orange
 will this work in the general case?

Painter’ s Algorithm: Problems

* Intersecting polygons present a problem

* even non-intersecting polygons can form a
cycle with no valid visibility order:

Analytic Visibility Algorithms

« early visibility algorithms computed the set of visible polygon
fragments directly, then rendered the fragments to a display:

Analytic Visibility Algorithms

* what is the minimum worst-case cost of
computing the fragments for a scene
composed of n polygons?

* answer:
O(n?)

Analytic Visibility Algorithms

* s0, for about a decade (late 60s to late 70s)
there was intense interest in finding efficient
algorithms for hidden surface removal

- we' |l talk about one:

* Binary Space Partition (BSP) Trees

10

Binary Space Partition Trees (1979)

 BSP Tree: partition space with binary tree of
planes

* idea: divide space recursively into half-spaces
by choosing splitting planes that separate
objects in scene

* preprocessing: create binary tree of planes

* runtime: correctly traversing this tree
enumerates objects from back to front

11

Creating BSP Trees: Objects

®

ce®
®

® Gﬁﬁ

Creating BSP Trees: Objects

PN

6666 66%%

13

Creating BSP Trees: Objects

>

ehe 4e e ©

14

Creating BSP Trees: Objects

Creating BSP Trees: Objects

16

Splitting Objects

* no bunnies were harmed in previous example

* but what if a splitting plane passes through
an object?

» split the object; give half to each node

17

Traversing BSP Trees

* tree creation independent of viewpoint
* preprocessing step
* tree traversal uses viewpoint
* runtime, happens for many different viewpoints

« each plane divides world into near and far

» for given viewpoint, decide which side is near and
which is far

 check which side of plane viewpoint is on
independently for each tree vertex

* tree traversal differs depending on viewpoint!
* recursive algorithm

* recurse on far side

 draw object

* recurse on near side

18

Traversing BSP Trees

query: given a viewpoint, produce an ordered list of (possibly
split) objects from back to front:

renderBSP (BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)
near = T->left; far = T->right;

else
near = T->right; far = T->left;
renderBSP (far) ;
if (T is a leaf node)
renderObject (T)

renderBSP (near) ;

19

BSP Trees : Viewpoint A

BSP Trees : Viewpoint A

21

BSP Trees : Viewpoint A

= decide independently at
each tree vertex

= not just left or right child!

22

BSP Trees : Viewpoint A

23

BSP Trees : Viewpoint A

24

BSP Trees : Viewpoint A

25

BSP Trees : Viewpoint A

26

BSP Trees : Viewpoint A

27

BSP Trees : Viewpoint A

28

BSP Trees : Viewpoint A

29

BSP Trees : Viewpoint A

30

BSP Trees : Viewpoint A

31

BSP Trees : Viewpoint A

32

BSP Trees : Viewpoint B

33

BSP Trees : Viewpoint B

34

BSP Tree Traversal: Polygons

split along the plane defined by any polygon
from scene

classify all polygons into positive or negative
half-space of the plane

* If a polygon intersects plane, split polygon into
two and classify them both

recurse down the negative half-space
recurse down the positive half-space

35

BSP Demo

» useful demo:
http.//symbolcraft.com/qraphics/bsp

36

BSP Demo

 order of insertion can affect half-plane extent

37

Summary: BSP Trees

pros:
- simple, elegant scheme

» correct version of painter’s algorithm back-to-front rendering
approach

- was very popular for video games (but getting less so)
cons.
 slow to construct tree: O(n log n) to split, sort

- splitting increases polygon count: O(n?) worst-case

- computationally intense preprocessing stage restricts algorithm to
static scenes

38

The Z-Buffer Algorithm (mid-70’ s)

« BSP trees proposed when memory was
expensive

- first 512x512 framebuffer was >$50,000!
« Ed Catmull proposed a radical new
approach called z-buffering
* the big idea:

* resolve visibility independently at each
pixel

39

The Z-Buffer Algorithm

* we know how to rasterize polygons into an
iImage discretized into pixels:

iy

40

The Z-Buffer Algorithm

* what happens if multiple primitives occupy

the same pixel on the screen?
» which is allowed to paint the pixel?

[2X

e

41

The Z-Buffer Algorithm

* idea: retain depth after projection transform

 each vertex maintains z coordinate
* relative to eye point

» can do this with canonical viewing volumes

42

The Z-Buffer Algorithm

* augment color framebuffer with Z-buffer or
depth buffer which stores Z value at each
pixel

» at frame beginning, initialize all pixel depths
to x

* when rasterizing, interpolate depth (£)
across polygon

» check Z-buffer before storing pixel color in
framebuffer and storing depth in Z-buffer

» don’t write pixel if its Z value is more distant
than the Z value already stored there

43

Interpolating Z

 barycentric coordinates

* interpolate Z like other
planar parameters

44

Z-Buffer

» store (r,g,b,z) for each pixel
* typically 8+8+8+24 bits, can be more

for all i,j {
Depth[i, j]
Image[i, j]
}
for all polygons P {
for all pixels in P {
if (Z pixel < Depth[i,]j]) {
Image[1i, j] C pixel
Depth[1i, j] Z pixel
}
}

MAX DEPTH
BACKGROUND COLOUR

}

45

Depth Test Precision

* reminder: perspective transformation maps
eye-space (view) z to NDC z

(Ex)
- i o |+ Az
E 0 A Ofx| |Ex+ Az \ 2 /
0 F B 0|y |Fy+Bz| |2, 5
OOCDZ_Cz+D_\Z D/
0 0 -1 o1 -z —(C+;)
|
* thus: ZNDC=_C+£

<

eye

Depth Test Precision

* therefore, depth-buffer essentially stores 1/z,
rather than z!

* issue with integer depth buffers
* high precision for near objects
* low precision for far objects

ZNDC

-n - Teye

47

Depth Test Precision

low precision can lead to depth fighting for far objects

 two different depths in eye space get mapped to same
depth in framebuffer

 which object “wins” depends on drawing order and scan-
conversion

gets worse for larger ratios f:n
* rule of thumb: f:n < 1000 for 24 bit depth buffer

with 16 bits cannot discern millimeter differences in
objects at 1 km distance

demo: sjbaker.org/steve/omniv/
love_your z buffer.html

48

More: Integer Depth Buffer

* reminder from picking discussion
 depth lies in the NDC z range [0,1]
 format: multiply by 2”*n -1 then round to nearest int
* where n = number of bits in depth buffer
« 24 bit depth buffer = 2724 = 16,777,216 possible
values
* small numbers near, large numbers far
« consider depth from VCS: (1<<N)*(a+b/z)
* N = number of bits of Z precision
* a=zFar/(zFar - zNear)
* b =2zFar* zNear / (zNear - zFar)
« z = distance from the eye to the object

49

Z-Buffer Algorithm Questions

how much memory does the Z-buffer use?

does the image rendered depend on the
drawing order?

does the time to render the image depend on
the drawing order?

how does Z-buffer load scale with visible
polygons? with framebuffer resolution?

50

Z-Buffer Pros

simple!!!

easy to implement in hardware

» hardware support in all graphics cards today
polygons can be processed in arbitrary order
easily handles polygon interpenetration

enables deferred shading

* rasterize shading parameters (e.g., surface
normal) and only shade final visible fragments

51

Z-Buffer Cons

 poor for scenes with high depth complexity

* need to render all polygons, even if
most are invisible

L]
L1

eye

» shared edges are handled inconsistently
* ordering dependent

52

Z-Buffer Cons

* requires lots of memory

* (e.g. 1280x1024x32 bits)
* requires fast memory

» Read-Modify-Write in inner loop
 hard to simulate translucent polygons

- we throw away color of polygons behind
closest one

» works if polygons ordered back-to-front

» extra work throws away much of the speed
advantage

53

Hidden Surface Removal

* two kinds of visibility algorithms
* object space methods
* Image space methods

54

Object Space Algorithms

determine visibility on object or polygon level
* using camera coordinates

resolution independent

» explicitly compute visible portions of polygons
early in pipeline

- after clipping

requires depth-sorting

* painter’s algorithm

* BSP trees

55

Image Space Algorithms

 perform visibility test for in screen coordinates
* limited to resolution of display
« Z-buffer: check every pixel independently

 performed late in rendering pipeline

56

Projective Rendering Pipeline

glVertex3f(x,y,z)
object world viewing
alter w
OCS WCS VCS _ glFrustum(...)
| modeling | | viewing , profjectlo:
; ion| | transformation| . .
transformation transformation clipping
glTranslatef(x,y,z) gluLookAt(...) | w CCS
giRotatef(th,x,y,z)
perspective _
OCS - object coordinate system S _ division norma.hzed
glutinitWindowSize(w,h) device
WCS - world coordinate system glViewport(x,y,a,b) NDCS
VCS - viewing coordinate system wewport_
transformation
CCS - clipping coordinate system device
NDCS - normalized device coordinate system DCS

DCS - device coordinate system

57

object world viewing

Rendering Pipeline

clipping
CS WCS VCS CCS
Geometry | |Model/View . Perspectiv _— Iw
Database |Transform._'" gl iqTransform.ei_' Clipping i‘
(4D)
normalized
device
NDCS
screen
device SCS
pcs (3D) (2D)
.| Scan : | Depth | _ Frame-
Conversioni” Texturing ‘| Test Blending buffer

58

Backface Culling

59

Back-Face Culling

on the surface of a closed orientable
manifold, polygons whose normals point
away from the camera are always

occluded:
N
~
—
my
— Y note: backface culling
— \g alone doesn’ t solve the
hidden-surface problem!

\ 60

Back-Face Culling

* not rendering backfacing polygons improves
performance

* by how much?

* reduces by about half the number of polygons
to be considered for each pixel

* optimization when appropriate

61

Back-Face Culling

« most objects in scene are typically “solid”
 rigorously: orientable closed manifolds
 orientable: must have two distinct sides

« cannot self-intersect

* a sphere is orientable since has
two sides, 'inside' and 'outside'.

» a Mobius strip or a Klein bottle is
not orientable

* closed: cannot “walk” from one
side to the other
* sphere is closed manifold
* plane is not

Back-Face Culling

» examples of non-manifold objects:

a single polygon

a terrain or height field

polyhedron w/ missing face

anything with cracks or holes in boundary
one-polygon thick lampshade

63

Back-face Culling: VCS

first idea:
cultif N, <0

sometimes
misses polygons that
should be culled

64

VCS

NDCS

eye

Back-face Culling: NDCS

g

i

y
/@/ works to cullif NV, >0

65

Invisible Primitives

* why might a polygon be invisible?
 polygon outside the field of view / frustum
* solved by clipping
 polygon is backfacing
« solved by backface culling
 polygon is occluded by object(s) nearer the viewpoint
* solved by hidden surface removal

66

INVISIBLE EVERYTHING

ICAMHASCHEEZEURGER COMIES £ v

67

Blending

68

Rendering Pipeline

Geometry | [Model/View Liahtin Perspectiv Cliboi
Database Transform. ghting Transform. 'PPING
L, Scan Texturin
Conversion g

I Blending |

69

Alpha and Premultiplication

 specify opacity with alpha channel a
 o=1: opaque, a=.5: translucent, a=0: transparent

* how to express a pixel is half covered by a red object?
« obvious way: store color independent from transparency (r,g,b,a)

* intuition: alpha as transparent colored glass
100% transparency can be represented with many different RGB values

 pixel value is (1,0,0,.5)
 upside: easy to change opacity of image, very intuitive
« downside: compositing calculations are more difficult - not associative

 elegant way: premultiply by a so store (ar, ag, ab,a)

* intuition: alpha as screen/mesh
RGB specifies how much color object contributes to scene
alpha specifies how much object obscures whatever is behind it (coverage)
- alpha of .5 means half the pixel is covered by the color, half completely transparent
only one 4-tuple represents 100% transparency: (0,0,0,0)

« pixel value is (.5, 0, 0, .5)
 upside: compositing calculations easy (& additive blending for glowing!)

« downside: less intuitive /70

Alpha and Simple Compositing

- F is foreground, B is background, F over B
« premultiply math: uniform for each component, simple, linear

* R'=Rp+(1-Ar)"Rg

© G =Gp+(1-Ap)"Gg

* B'=Bg+(1-Ar)"Bg

© A= AHT-AR) A

* associative: easy to chain together multiple operations
* non-premultiply math: trickier

R'= (Re"Ag + (1-Ap)"Rg™Ag)/A’

o G'=(G"Ae + (1-Ap)"Gg"Ag)/A

© B'= (B A + (1-Ap)"Bg"Ag)/A

© A= AH(1-AR)"Ag

- don't need divide if F or B is opaque. but still... oof!

* chaining difficult, must avoid double-counting with intermediate ops
71

Alpha and Complex Compositing
 foreground color A, background color B
* how might you combine multiple elements?
- Compositing Digital Images, Porter and Duff, Siggraph '84
« pre-multiplied alpha allows all cases to be handled simply

A over B AinB AoutB A xor B
b {«)re SOPO() ® '4
Opaque : 43
AandB) ¢ ¥4
> &4 & 222
re 2280 iR =T)+
wvyw wvvyw YVvywvwy wVvyw vw vw YvYyvyvwv vw wvyw wvyw
aly PAiihe 1IATII 13eATIee Jesiiites pisAATiN:
Partially [2=} 2! 2‘4 oP() 94) 43
transparent : D 6 y : ’: : : : 23 : : : 0«
AandB j > & .}3. &< 33 »io *o() ro 9
Conceptual :E’b
sub-pixel —
overlay

Alpha Examples

* blend white and clear equally (50% each)
- white is (1,1,1,1), clear is (0,0,0,0), black is (0,0,0,1)
« premultiplied: multiply componentwise by 50% and just add together

* (.9, .9, .9, .95)is indeed half-transparent white in premultiply format
* 4-tuple would mean half-transparent grey in non-premultiply format

- premultiply allows both conventional blend and additive blend
 alpha 0 and RGB nonzero: glowing/luminescent
* (nice for particle systems, stay tuned)

« for more: see nice writeup from Alvy Ray Smith
 technical academy award for Smith, Catmull, Porter, Duff
 http://www.alvyray.com/Awards/AwardsAcademy96.htm

73

