University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2013

Tamara Munzner

Hidden Surfaces

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013

Clarification: Blinn-Phong Model

« only change vs Phong model is to have the specular
calculation to use (h*n) instead of (V°r)

« full Blinn-Phong lighting model equation has

ambient, diffuse, specular terms
#lights

n,.
Itotal = kaIambient + Eli(kd (n ° l.) + ks(n * hn) i)

i=1

« just like full Phong model equation
#Flights
nc iny
Lot = Ko Lompicnt + Eli(kd @) +k(ver,) ")
i=1

2

Reading for Hidden Surfaces

» FCG Sect 8.2.3 Z-Buffer

* FCG Sect 12.4 BSP Trees
+ (8.1, 8.2 21 ed)

* FCG Sect 3.4 Alpha Compositing
« (N/A 27 ed)

Hidden Surface Removal

Occlusion

for most interesting scenes, some polygons

overlap
~ |4

to render the correct image, we need to
determine which polygons occlude which

Painter’ s Algorithm

simple: render the polygons from back to
front, “painting over” previous polygons

- [#

« draw blue, then green, then orange
will this work in the general case?

Painter’ s Algorithm: Problems

* intersecting polygons present a problem

= even non-intersecting polygons can form a
cycle with no valid visibility order:

Analytic Visibility Algorithms

« early visibility algorithms computed the set of visible polygon

fragments directly, then rendered the fragments to a display:

Analytic Visibility Algorithms

what is the minimum worst-case cost of
computing the fragments for a scene
composed of n polygons?
answer:

O(n?)

Analytic Visibility Algorithms

so, for about a decade (late 60s to late 70s)
there was intense interest in finding efficient
algorithms for hidden surface removal

we’ |l talk about one:

 Binary Space Partition (BSP) Trees

Binary Space Partition Trees (1979)

» BSP Tree: partition space with binary tree of

planes

« idea: divide space recursively into half-spaces
by choosing splitting planes that separate
objects in scene

* preprocessing: create binary tree of planes

* runtime: correctly traversing this tree
enumerates objects from back to front

Creating BSP Trees: Objects
®
P

<
® %ﬁg

Creating BSP Trees: Objects

%)
é % @@@éi&a%
t e

Creating BSP Trees: Objects

® e te 68 ©
% 1

Creating BSP Trees: Objects

Creating BSP Trees: Objects

BSP Trees : Viewpoint A

BSP Trees : Viewpoint A

BSP Trees : Viewpoint A

28

BSP Trees : Viewpoint A

19

27

=
2
73
1%2]
o
&
G
0w 2 O < < <
O S= ~~8 P - - -
$ 3t i & £ £ £
= 5E g0 o o o]
- ¥ g s 3
..D\.v 58 wm. I M nW.. W
o 8¢ w ! S S S
£
=} H]
o) T °F &
o= oW 0)
S 82 g3l oy o3 ® ® ®
o g8 YERE E 2E 8 o o
S 88 §.88 ToyEw = = =
s 5= £387 FRisd o N =
L S mo B B4 Qg o o o
[-] S w9 (7] 2 0
c g o "G owoa m (1] [11]
@ R EEEE R
= 0 oo >N [] g M
> my0U 9ok OO
2 4D -6 0 87— HT
S dHw S Fu 8
m gm0 WA W
Iy
] y g]
2
o ®
c
8.2 S
® 85 5 8 g < g
Q = 2o 2 - - -
c Sco0o 2 o = (= [=
Q S - ©3 - S f— — f—
_” a S=® Sxc o o o
s SEs ges o o o
o & 282 e 2 = 3
w Z g3so3 255 k] k] 2
o £ o
[11] = Wm.mm m.mm. > > >
2 c - —_— e -n
D & WmM% R ° o
c T Q=0T w3 (2] = (7] ()
= c 25 coEx o T 5
n 89>8 32 =88 [} S [} [}
= 08 ponS TLEET = (7] £ (1] (9]
o O® © S O .mv..m..mr % — S — -
S 858888 225t 8 = 5 = N
c >392 S o o)
© =L a2 202Dc9c L o
D E © == Lo VO gmolo
C cog8s5l558%w 2 o 5 o o o
= 3¢S oc- 3580869 n > & [75) n
S0 0o U S nxXas > 2 2 m o @ m om
T o g 2-89 0% 333 o =
0 ZgER2c 2o PLOTD =27}
53 EEP26es53858 = 2
S 5c 5. oD oo C =
oa02GCLe3 e & ©
Q. 2. @, . o <
550 .
. . .

Splitting Objects

* no bunnies were harmed in previous example
+ but what if a splitting plane passes through

& -

« split the object; give half to each node

an object?

@
4

BSP Trees : Viewpoint A

BSP Trees : Viewpoint A

25

BSP Trees : Viewpoint A

BSP Trees : Viewpoint B

BSP Trees : Viewpoint B

BSP Tree Traversal: Polygons

« split along the plane defined by any polygon
from scene

« classify all polygons into positive or negative
half-space of the plane

- if a polygon intersects plane, split polygon into
two and classify them both

« recurse down the negative half-space
» recurse down the positive half-space

BSP Demo

« useful demo:
http://symbolcraft.com/qraphics/bsp

BSP Demo

« order of insertion can affect half-plane extent

Summary: BSP Trees

* pros:
« simple, elegant scheme
« correct version of painter’s algorithm back-to-front rendering
approach
« was very popular for video games (but getting less so)
* cons:
« slow to construct tree: O(n log n) to split, sort
- splitting increases polygon count: O(n?) worst-case

« computationally intense preprocessing stage restricts algorithm to
static scenes

The Z-Buffer Algorithm (mid-70’s)

» BSP trees proposed when memory was
expensive

- first 512x512 framebuffer was >$50,000!
« Ed Catmull proposed a radical new
approach called z-buffering
« the big idea:
« resolve visibility independently at each
pixel

The Z-Buffer Algorithm

» we know how to rasterize polygons into an
image discretized into pixels:

5 I 0 S

40

The Z-Buffer Algorithm

» what happens if multiple primitives occupy
the same pixel on the screen?
= which is allowed to paint the pixel?

% &

The Z-Buffer Algorithm

« idea: retain depth after projection transform
 each vertex maintains z coordinate
« relative to eye point
« can do this with canonical viewing volumes

The Z-Buffer Algorithm

» augment color framebuffer with Z-buffer or
depth buffer which stores Z value at each
pixel
« at frame beginning, initialize all pixel depths
to »

« when rasterizing, interpolate depth (Z)
across polygon

= check Z-buffer before storing pixel color in
framebuffer and storing depth in Z-buffer

« don’t write pixel if its Z value is more distant
than the Z value already stored there

43

Interpolating Z

* barycentric coordinates

« interpolate Z like other
planar parameters

Z-Buffer

- store (r,g,b,z) for each pixel
« typically 8+8+8+24 bits, can be more

for all i,j {
Depth[i,j] = MAX DEPTH
Image[i,j] = BACKGROUND_COLOUR
}
for all polygons P {
for all pixels in P {
if (Z_pixel < Depth[i,j]) {
Image[i,j] = C_pixel
Depth[i,j] = Z_pixel
}
}
}

45

Depth Test Precision

» reminder: perspective transformation maps
eye-space (view) z to NDC z

[
- —+Az
E 0 A O|x| |Ex+Az z
0o F B 0|yl |Fv+B: _(Q+BZ)
0 0 C Dlz| [Cz+D| | \fF
D
0 0 -1 0ft1 -z -(C‘f;)
1
* thus: ZND,;=—C+D]
Zeye

Depth Test Precision

- therefore, depth-buffer essentially stores 1/z,
rather than z!

« issue with integer depth buffers
« high precision for near objects
« low precision for far objects

ZNDC

. o TCeye
n f 47

Depth Test Precision

« low precision can lead to depth fighting for far objects

- two different depths in eye space get mapped to same
depth in framebuffer

« which object “wins” depends on drawing order and scan-
conversion

- gets worse for larger ratios f:n
* rule of thumb: f:n < 1000 for 24 bit depth buffer

= with 16 bits cannot discern millimeter differences in
objects at 1 km distance

« demo: sjbaker.org/steve/omniv/
love_your_z_buffer.html

48

More: Integer Depth Buffer

reminder from picking discussion

« depth lies in the NDC z range [0,1]

« format: multiply by 2*n -1 then round to nearest int

« where n = number of bits in depth buffer

24 bit depth buffer = 2424 = 16,777,216 possible
values

+ small numbers near, large numbers far

consider depth from VCS: (1<<N)*(a+b/z)
» N = number of bits of Z precision

» a=zFar/ (zFar - zNear)

* b =zFar * zNear / (zNear - zFar)

+ z = distance from the eye to the object

49

Z-Buffer Algorithm Questions

* how much memory does the Z-buffer use?

» does the image rendered depend on the
drawing order?

 does the time to render the image depend on
the drawing order?

* how does Z-buffer load scale with visible
polygons? with framebuffer resolution?

Z-Buffer Pros

* simple!!!
* easy to implement in hardware

» hardware support in all graphics cards today
* polygons can be processed in arbitrary order
« easily handles polygon interpenetration
* enables deferred shading

« rasterize shading parameters (e.g., surface
normal) and only shade final visible fragments

Z-Buffer Cons

« poor for scenes with high depth complexity

» need to render all polygons, even if
most are invisible

3,4
eye

» shared edges are handled inconsistently
* ordering dependent

Z-Buffer Cons

requires lots of memory
* (e.g. 1280x1024x32 bits)
requires fast memory
» Read-Modify-Write in inner loop
hard to simulate translucent polygons
» we throw away color of polygons behind
closest one
» works if polygons ordered back-to-front
« extra work throws away much of the speed
advantage

Hidden Surface Removal

« two kinds of visibility algorithms
* object space methods
» image space methods

Object Space Algorithms

« determine visibility on object or polygon level
* using camera coordinates
* resolution independent
« explicitly compute visible portions of polygons
« early in pipeline
« after clipping
* requires depth-sorting
* painter’s algorithm
- BSP trees

Image Space Algorithms

« perform visibility test for in screen coordinates
« limited to resolution of display
« Z-buffer: check every pixel independently

« performed late in rendering pipeline

Projective Rendering Pipeline

glVertex3f(x,y,z)

object world viewing

WCs VvCs alterw glFrustum(...)

__,| modeling
transformation
glTranslatef(x,y,z)
glRotatef(th,x,y,z)

viewing
transformation

projection
*| transfol on| . .
clipping

gluLookAt(...) Iw ccs

OCS - object coordinate syst
object coordinate SySIeny tinitWindowSize(w,h) device

WCS - world coordinate system glViewport(x,y,a,b) l NDCS

viewport
transformation

CCS - clipping coordinate system device
DCS

VCS - viewing coordinate system

NDCS - normalized device coordinate system

DCS - device coordinate system

perspective 5
division |normalized

Rendering Pipeline

object world viewing clipping
CS WCS VCS CCS
Geometry | [Model/View| S Perspectivel A Iw
Database Transform. Riohting Transform. (Gl
(4D)
normalized
device
NDCS
screen
device Scs
pcs (3D) 2D)
Scan q Depth . Frame-
convnson i“ Test + Blending buffer
58

Backface Culling

Back-Face Culling

+ on the surface of a closed orientable
manifold, polygons whose normals point
away from the camera are always
occluded:

~,
note: backface culling

— alone doesn’ t solve the
hidden-surface problem!

60

Back-Face Culling

* not rendering backfacing polygons improves
performance
* by how much?
« reduces by about half the number of polygons
to be considered for each pixel

« optimization when appropriate

61

Back-Face Culling

+ most objects in scene are typically “solid”
« rigorously: orientable closed manifolds
« orientable: must have two distinct sides
« cannot self-intersect
+ asphere is orientable since has
two sides, 'inside' and 'outside’.
+ a Mobius strip or a Klein bottle is
not orientable
« closed: cannot “walk” from one
side to the other
« sphere is closed manifold
+ plane is not

Back-Face Culling

+ examples of non-manifold objects: x
« asingle polygon
« aterrain or height field
« polyhedron w/ missing face
« anything with cracks or holes in boundary
« one-polygon thick lampshade |

Back-face Culling: VCS

first idea:
cullif N, <0

sometimes
misses polygons that
should be culled

Back-face Culling: NDCS

VvCS

z eye v
NDCS
eye —

works to cull if N, >0

65

Invisible Primitives

* why might a polygon be invisible?
« polygon outside the field of view / frustum
« solved by clipping
« polygon is backfacing
« solved by backface culling
« polygon is occluded by object(s) nearer the viewpoint
« solved by hidden surface removal

Blending

66 67
Rendering Pipeline Alpha and Premultiplication Alpha and Simple Compositing Alpha and Complex Compositing
ity ity with albha ch ' - foreground color A, background color B
* specify opacity with alpha channel o « Fis foreground, B is background, F over B . . ;
° o=1: opaqus, a=.5: iranslucent, o=0: transparent . remultigl math: uniform?‘or each component, simple, linear + how might you combine muitiple elements?
. e ‘ + how to express a pixel is half covered by a red object? p R :z“ N)*.R P » Simple, + Compositing Digital Images, Porter and Duff, Siggraph '84
eometi lodel/View| I, erspective T = - s "
Databas’: Transform. [Lighting Tran';mm_ Clipping + obvious way: store color independent from transparency (r,g.b,c) . o= GFF+(1" AFF),GBB « pre-multiplied alpha allows all cases to be handled simply
* intuition: alpha as transparent colored glass A - - — S .
+ 100% transparency can be represented with many different RGB values + B'=Bg+(1-Ar)*Bg ouer, L gl atop ol
+ pixel value is (1,0,0,.5) o A= AH(1-A) Ay vl 13sfaTeve!
* upside: easy to change opacity of image, very intuitive « associative: easy to chain together multiple operations 3 b g:
Cean - Depth . Frame- « downside: oomposi?ing calculations are more difficult - not associative + non-premultiply math: trickier sSI gj
Conversion exturing Test Blending buffer « elegant way: premultiply by o so store (ar, ag, ab,a) © R = ReA: + (1A Ry Ag)A R
« intuition: alpha as screen/mesh o G = (Ge*Ar + (1-A0) G Ag)/A Partially }: “g\a [$2¢ SRl 3o3)
- RGB specifies how much color object contributes to scene ! rr Sl "a“:l;ar:g"ﬂ‘ U IR ‘|
- alpha specifies how much object obscures whatever is behind it (coverage) © B'=(Be"Ar + (1-A)Bg"Ag)/A' sSIS $4 43 $33]
« alpha of .5 means half the pixel is covered by the color, half completely transparent o A= Ac+H(1-AL)A & B SeSSees S
- only one 4-tuple represents 100% transparency: (0,0,0,0) oF B . §
- pixel value is (5, 0, 0, .5) . don_t _need_dlwde ifForB |§ opaque. but S.QI"... f)of.!) Cosnucbe_rgb\g} b
- upside: compositing calculations easy (& additive blending for glowing!) «+ chaining difficult, must avoid double-counting with intermediate ops overlay
69 « downside: less intuitive 70 =

71

Alpha Examples

« blend white and clear equally (50% each)
« whiteis (1,1,1,1), clear is (0,0,0,0), black is (0,0,0,1)
« premultiplied: multiply componentwise by 50% and just add together
« (.5, .5, .5, .5)is indeed half-transparent white in premultiply format
* 4-tuple would mean half- it grey in iply format
« premultiply allows both conventional blend and additive blend
« alpha 0 and RGB nonzero: glowing/luminescent
+ (nice for particle systems, stay tuned)
« for more: see nice writeup from Alvy Ray Smith
« technical academy award for Smith, Catmull, Porter, Duff
* http://www.alvyray.com/Awards/AwardsAcademy96.htm

73

