
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013

Hidden Surfaces

University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2013

Tamara Munzner

2

Clarification: Blinn-Phong Model
• only change vs Phong model is to have the specular

calculation to use instead of

•  full Blinn-Phong lighting model equation has
ambient, diffuse, specular terms

•  just like full Phong model equation

!

(h•n)

!

Itotal = kaIambient + Ii (
i=1

lights

" kd (n• li) + ks(n•hi)
nshiny)

!

(v•r)

!

Itotal = kaIambient + Ii (
i=1

lights

" kd (n• li) + ks(v•ri)
nshiny)

3

Reading for Hidden Surfaces

•  FCG Sect 8.2.3 Z-Buffer
•  FCG Sect 12.4 BSP Trees

•  (8.1, 8.2 2nd ed)
•  FCG Sect 3.4 Alpha Compositing

•  (N/A 2nd ed)

4

Hidden Surface Removal

5

Occlusion

•  for most interesting scenes, some polygons
overlap

•  to render the correct image, we need to
determine which polygons occlude which

6

Painter’s Algorithm
•  simple: render the polygons from back to

front, “painting over” previous polygons

•  draw blue, then green, then orange
•  will this work in the general case?

7

Painter’s Algorithm: Problems

•  intersecting polygons present a problem
•  even non-intersecting polygons can form a

cycle with no valid visibility order:

8

Analytic Visibility Algorithms
•  early visibility algorithms computed the set of visible polygon

fragments directly, then rendered the fragments to a display:

9

Analytic Visibility Algorithms

•  what is the minimum worst-case cost of
computing the fragments for a scene
composed of n polygons?

•  answer:
O(n2)

10

Analytic Visibility Algorithms

•  so, for about a decade (late 60s to late 70s)
there was intense interest in finding efficient
algorithms for hidden surface removal

•  we’ll talk about one:
•  Binary Space Partition (BSP) Trees

11

Binary Space Partition Trees (1979)

•  BSP Tree: partition space with binary tree of
planes
•  idea: divide space recursively into half-spaces

by choosing splitting planes that separate
objects in scene

•  preprocessing: create binary tree of planes
•  runtime: correctly traversing this tree

enumerates objects from back to front

12

Creating BSP Trees: Objects

13

Creating BSP Trees: Objects

14

Creating BSP Trees: Objects

15

Creating BSP Trees: Objects

16

Creating BSP Trees: Objects

17

Splitting Objects

•  no bunnies were harmed in previous example
•  but what if a splitting plane passes through

an object?
•  split the object; give half to each node

Ouch

18

Traversing BSP Trees
•  tree creation independent of viewpoint

•  preprocessing step
•  tree traversal uses viewpoint

•  runtime, happens for many different viewpoints
•  each plane divides world into near and far

•  for given viewpoint, decide which side is near and
which is far

•  check which side of plane viewpoint is on
independently for each tree vertex

•  tree traversal differs depending on viewpoint!
•  recursive algorithm

•  recurse on far side
•  draw object
•  recurse on near side

19

Traversing BSP Trees

renderBSP(BSPtree *T)
 BSPtree *near, *far;
 if (eye on left side of T->plane)
 near = T->left; far = T->right;
 else
 near = T->right; far = T->left;
 renderBSP(far);
 if (T is a leaf node)
 renderObject(T)
 renderBSP(near);

query: given a viewpoint, produce an ordered list of (possibly
split) objects from back to front:

20

BSP Trees : Viewpoint A

21

BSP Trees : Viewpoint A

F N

F

N

22

BSP Trees : Viewpoint A

F N F
N

F N

  decide independently at
each tree vertex

  not just left or right child!

23

BSP Trees : Viewpoint A

F N

F

N

N F

F N

24

BSP Trees : Viewpoint A

F N

F

N

N F

F N

25

BSP Trees : Viewpoint A

F N

F N
F

N

N F

1

1

26

BSP Trees : Viewpoint A

F N
F N

F N

F N N F

1

2

1 2

27

BSP Trees : Viewpoint A

F N

F

N
F N

F N

N F

N F

1

2

1 2

28

BSP Trees : Viewpoint A

F N

F

N
F N

F N

N F

N F

1

2

1 2

29

BSP Trees : Viewpoint A

F N

F

N
F N

F N

N F

N F

1

2

3

1 2

3
30

BSP Trees : Viewpoint A

F N

F N

F N

N F

N F

1

2

3

4

F N

1 2

3 4

31

BSP Trees : Viewpoint A

F N

F N

F N

N F

N F

1

2

3

4 5

F N

1 2

3 4

5

32

BSP Trees : Viewpoint A

F N

F N

F N

N F

N F

1

2

3

4 5

1 2

3 4

5

6

7 8

9 6

7
8

9

F N

F N

F N

33

BSP Trees : Viewpoint B

N F

F

N F

N

F N

F N

F N F N

N F

34

BSP Trees : Viewpoint B

N F

F

N F

N

F N

1

3 4

2

F N

F N F N

N F 5

6

7

8 9 1

2

3

4

5

6

7

9

8

35

BSP Tree Traversal: Polygons

•  split along the plane defined by any polygon
from scene

•  classify all polygons into positive or negative
half-space of the plane
•  if a polygon intersects plane, split polygon into

two and classify them both
•  recurse down the negative half-space
•  recurse down the positive half-space

36

BSP Demo

•  useful demo:
http://symbolcraft.com/graphics/bsp

37

BSP Demo

•  order of insertion can affect half-plane extent

38

Summary: BSP Trees
•  pros:

•  simple, elegant scheme
•  correct version of painter’s algorithm back-to-front rendering

approach
•  was very popular for video games (but getting less so)

•  cons:
•  slow to construct tree: O(n log n) to split, sort
•  splitting increases polygon count: O(n2) worst-case
•  computationally intense preprocessing stage restricts algorithm to

static scenes

39

The Z-Buffer Algorithm (mid-70’s)

•  BSP trees proposed when memory was
expensive
•  first 512x512 framebuffer was >$50,000!

•  Ed Catmull proposed a radical new
approach called z-buffering

•  the big idea:
•  resolve visibility independently at each

pixel

40

The Z-Buffer Algorithm

•  we know how to rasterize polygons into an
image discretized into pixels:

41

The Z-Buffer Algorithm

•  what happens if multiple primitives occupy
the same pixel on the screen?
•  which is allowed to paint the pixel?

42

The Z-Buffer Algorithm

•  idea: retain depth after projection transform
•  each vertex maintains z coordinate

•  relative to eye point
•  can do this with canonical viewing volumes

43

The Z-Buffer Algorithm
•  augment color framebuffer with Z-buffer or

depth buffer which stores Z value at each
pixel
•  at frame beginning, initialize all pixel depths

to ∞
•  when rasterizing, interpolate depth (Z)

across polygon
•  check Z-buffer before storing pixel color in

framebuffer and storing depth in Z-buffer
•  don’t write pixel if its Z value is more distant

than the Z value already stored there
44

Interpolating Z

•  barycentric coordinates
•  interpolate Z like other

planar parameters

45

Z-Buffer

•  store (r,g,b,z) for each pixel
•  typically 8+8+8+24 bits, can be more

for all i,j {
 Depth[i,j] = MAX_DEPTH
 Image[i,j] = BACKGROUND_COLOUR
}
for all polygons P {
 for all pixels in P {
 if (Z_pixel < Depth[i,j]) {
 Image[i,j] = C_pixel
 Depth[i,j] = Z_pixel
 }
 }
}

46

Depth Test Precision

•  reminder: perspective transformation maps
eye-space (view) z to NDC z

•  thus:

!

E 0 A 0
0 F B 0
0 0 C D
0 0 "1 0

$

%
%
%
%

&

'

(
(
(
(

x
y
z
1

$

%
%
%
%

&

'

(
(
(
(

=

Ex + Az
Fy + Bz
Cz + D
"z

$

%
%
%
%

&

'

(
(
(
(

=

"
Ex
z

+ Az
)

*
+

,

-
.

"
Fy
z

+ Bz
)

*
+

,

-
.

" C +
D
z

)

*
+

,

-
.

1

$

%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(

!

zNDC = " C +
D
zeye

$
% %

&

'
((

47

Depth Test Precision
•  therefore, depth-buffer essentially stores 1/z,

rather than z!
•  issue with integer depth buffers

• high precision for near objects
•  low precision for far objects

-zeye

zNDC

-n -f 48

Depth Test Precision
•  low precision can lead to depth fighting for far objects

•  two different depths in eye space get mapped to same
depth in framebuffer

•  which object “wins” depends on drawing order and scan-
conversion

•  gets worse for larger ratios f:n
•  rule of thumb: f:n < 1000 for 24 bit depth buffer

•  with 16 bits cannot discern millimeter differences in
objects at 1 km distance

•  demo: sjbaker.org/steve/omniv/
love_your_z_buffer.html

49

More: Integer Depth Buffer
•  reminder from picking discussion

•  depth lies in the NDC z range [0,1]
•  format: multiply by 2^n -1 then round to nearest int

•  where n = number of bits in depth buffer
•  24 bit depth buffer = 2^24 = 16,777,216 possible

values
•  small numbers near, large numbers far

•  consider depth from VCS: (1<<N) * (a + b / z)
•  N = number of bits of Z precision
•  a = zFar / (zFar - zNear)
•  b = zFar * zNear / (zNear - zFar)
•  z = distance from the eye to the object

50

 Z-Buffer Algorithm Questions

•  how much memory does the Z-buffer use?
•  does the image rendered depend on the

drawing order?
•  does the time to render the image depend on

the drawing order?
•  how does Z-buffer load scale with visible

polygons? with framebuffer resolution?

51

Z-Buffer Pros

•  simple!!!
•  easy to implement in hardware

•  hardware support in all graphics cards today
•  polygons can be processed in arbitrary order
•  easily handles polygon interpenetration
•  enables deferred shading

•  rasterize shading parameters (e.g., surface
normal) and only shade final visible fragments

52

Z-Buffer Cons
•  poor for scenes with high depth complexity

•  need to render all polygons, even if
most are invisible

•  shared edges are handled inconsistently
• ordering dependent

eye

53

Z-Buffer Cons
•  requires lots of memory

•  (e.g. 1280x1024x32 bits)
•  requires fast memory

•  Read-Modify-Write in inner loop
•  hard to simulate translucent polygons

• we throw away color of polygons behind
closest one

• works if polygons ordered back-to-front
• extra work throws away much of the speed

advantage
54

Hidden Surface Removal

•  two kinds of visibility algorithms
•  object space methods
•  image space methods

55

Object Space Algorithms
•  determine visibility on object or polygon level

•  using camera coordinates
•  resolution independent

•  explicitly compute visible portions of polygons
•  early in pipeline

•  after clipping
•  requires depth-sorting

•  painter’s algorithm
•  BSP trees

56

Image Space Algorithms
•  perform visibility test for in screen coordinates

•  limited to resolution of display
•  Z-buffer: check every pixel independently

•  performed late in rendering pipeline

57

Projective Rendering Pipeline

OCS - object coordinate system

WCS - world coordinate system

VCS - viewing coordinate system

CCS - clipping coordinate system

NDCS - normalized device coordinate system

DCS - device coordinate system

OCS WCS VCS

CCS

NDCS

DCS

modeling
transformation

viewing
transformation

projection
transformation

viewport
transformation

alter w

/ w

object world viewing

device

normalized
device

clipping

perspective
division

glVertex3f(x,y,z)

glTranslatef(x,y,z)
glRotatef(th,x,y,z)
....

gluLookAt(...)

glFrustum(...)

glutInitWindowSize(w,h)
glViewport(x,y,a,b)

58

Rendering Pipeline

Geometry
Database

Model/View
Transform. Lighting Perspective

Transform. Clipping

Scan
Conversion

Depth
Test Texturing Blending

Frame-
buffer

OCS
object

WCS
world

VCS
viewing

CCS
clipping

NDCS

normalized
device

SCS
screen

(2D) DCS
device

(3D)

(4D)

/w

59

Backface Culling

60

Back-Face Culling

•  on the surface of a closed orientable
manifold, polygons whose normals point
away from the camera are always
occluded:

note: backface culling
alone doesn’t solve the
hidden-surface problem!

61

Back-Face Culling

•  not rendering backfacing polygons improves
performance
•  by how much?

•  reduces by about half the number of polygons
to be considered for each pixel

•  optimization when appropriate

62

Back-Face Culling
•  most objects in scene are typically “solid”
•  rigorously: orientable closed manifolds

•  orientable: must have two distinct sides
•  cannot self-intersect
•  a sphere is orientable since has

two sides, 'inside' and 'outside'.
•  a Mobius strip or a Klein bottle is

not orientable
•  closed: cannot “walk” from one

side to the other
•  sphere is closed manifold
•  plane is not

63

Back-Face Culling

•  examples of non-manifold objects:
•  a single polygon
•  a terrain or height field
•  polyhedron w/ missing face
•  anything with cracks or holes in boundary
•  one-polygon thick lampshade

64

Back-face Culling: VCS

y

z

first idea:
 cull if 0<ZN

sometimes
misses polygons that
should be culled eye

65

Back-face Culling: NDCS

y

z eye

VCS

NDCS

eye works to cull if 0>ZN
y

z

66

Invisible Primitives
•  why might a polygon be invisible?

•  polygon outside the field of view / frustum
•  solved by clipping

•  polygon is backfacing
•  solved by backface culling

•  polygon is occluded by object(s) nearer the viewpoint
•  solved by hidden surface removal

67 68

Blending

69

Rendering Pipeline

Geometry
Database

Model/View
Transform. Lighting Perspective

Transform. Clipping

Scan
Conversion

Depth
Test Texturing Blending

Frame-
buffer

Alpha and Premultiplication
•  specify opacity with alpha channel α

•  α=1: opaque, α=.5: translucent, α=0: transparent
•  how to express a pixel is half covered by a red object?

•  obvious way: store color independent from transparency (r,g,b,α)
•  intuition: alpha as transparent colored glass

•  100% transparency can be represented with many different RGB values

•  pixel value is (1,0,0,.5)
•  upside: easy to change opacity of image, very intuitive
•  downside: compositing calculations are more difficult - not associative

•  elegant way: premultiply by α so store (αr, αg, αb,α)
•  intuition: alpha as screen/mesh

•  RGB specifies how much color object contributes to scene
•  alpha specifies how much object obscures whatever is behind it (coverage)
•  alpha of .5 means half the pixel is covered by the color, half completely transparent
•  only one 4-tuple represents 100% transparency: (0,0,0,0)

•  pixel value is (.5, 0, 0, .5)
•  upside: compositing calculations easy (& additive blending for glowing!)
•  downside: less intuitive 70

Alpha and Simple Compositing
•  F is foreground, B is background, F over B
•  premultiply math: uniform for each component, simple, linear

•  R' = RF+(1-AF)*RB
•  G' = GF+(1-AF)*GB

•  B' = BF+(1-AF)*BB

•  A' = AF+(1-AF)*AB

•  associative: easy to chain together multiple operations

•  non-premultiply math: trickier
•  R' = (RF*AF + (1-AF)*RB*AB)/A'
•  G' = (GF*AF + (1-AF)*GB*AB)/A'
•  B' = (BF*AF + (1-AF)*BB*AB)/A'
•  A' = AF+(1-AF)*AB

•  don't need divide if F or B is opaque. but still… oof!
•  chaining difficult, must avoid double-counting with intermediate ops
 71 72

Alpha and Complex Compositing
•  foreground color A, background color B
•  how might you combine multiple elements?

•  Compositing Digital Images, Porter and Duff, Siggraph '84
•  pre-multiplied alpha allows all cases to be handled simply

Alpha Examples
•  blend white and clear equally (50% each)

•  white is (1,1,1,1), clear is (0,0,0,0), black is (0,0,0,1)
•  premultiplied: multiply componentwise by 50% and just add together
•  (.5, .5, .5, .5) is indeed half-transparent white in premultiply format

•  4-tuple would mean half-transparent grey in non-premultiply format

•  premultiply allows both conventional blend and additive blend
•  alpha 0 and RGB nonzero: glowing/luminescent
•  (nice for particle systems, stay tuned)

•  for more: see nice writeup from Alvy Ray Smith
•  technical academy award for Smith, Catmull, Porter, Duff
•  http://www.alvyray.com/Awards/AwardsAcademy96.htm

73

