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Clarification: Blinn-Phong Model 
• only change vs Phong model is to have the specular 

calculation to use            instead of 

•   full Blinn-Phong lighting model equation has 
ambient, diffuse, specular terms 

•   just like full Phong model equation  
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Reading for Hidden Surfaces 

•  FCG Sect 8.2.3 Z-Buffer 
•  FCG Sect 12.4 BSP Trees 

•  (8.1, 8.2 2nd ed) 
•  FCG Sect 3.4 Alpha Compositing 

•  (N/A 2nd ed) 
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Hidden Surface Removal 
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Occlusion 

•  for most interesting scenes, some polygons 
overlap 

•  to render the correct image, we need to 
determine which polygons occlude which 
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Painter’s Algorithm 
•  simple: render the polygons from back to 

front, “painting over” previous polygons 

•  draw blue, then green, then orange 
•  will this work in the general case? 
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Painter’s Algorithm: Problems 

•  intersecting polygons present a problem 
•  even non-intersecting polygons can form a 

cycle with no valid visibility order: 
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Analytic Visibility Algorithms 
•  early visibility algorithms computed the set of visible polygon 

fragments directly, then rendered the fragments to a display: 
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Analytic Visibility Algorithms 

•  what is the minimum worst-case cost of 
computing the fragments for a scene 
composed of n polygons? 

•  answer:  
O(n2) 
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Analytic Visibility Algorithms 

•  so, for about a decade (late 60s to late 70s) 
there was intense interest in finding efficient 
algorithms for hidden surface removal 

•  we’ll talk about one:  
•  Binary Space Partition (BSP) Trees 
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Binary Space Partition Trees (1979) 

•  BSP Tree: partition space with binary tree of 
planes 
•  idea: divide space recursively into half-spaces 

by choosing splitting planes that separate 
objects in scene 

•  preprocessing: create binary tree of planes  
•  runtime: correctly traversing this tree 

enumerates objects from back to front 
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Creating BSP Trees: Objects 
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Creating BSP Trees: Objects 
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Creating BSP Trees: Objects 
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Creating BSP Trees: Objects 
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Creating BSP Trees: Objects 
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Splitting Objects 

•  no bunnies were harmed in previous example 
•  but what if a splitting plane passes through 

an object? 
•  split the object; give half to each node 

Ouch 
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Traversing BSP Trees 
•  tree creation independent of viewpoint 

•  preprocessing step 
•  tree traversal uses viewpoint 

•  runtime, happens for many different viewpoints 
•  each plane divides world into near and far 

•  for given viewpoint, decide which side is near and 
which is far 

•  check which side of plane viewpoint is on 
independently for each tree vertex 

•  tree traversal differs depending on viewpoint! 
•  recursive algorithm 

•  recurse on far side 
•  draw object 
•  recurse on near side 
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Traversing BSP Trees 

renderBSP(BSPtree *T) 
 BSPtree *near, *far; 
 if (eye on left side of T->plane) 
  near = T->left; far = T->right; 
 else  
  near = T->right; far = T->left; 
 renderBSP(far); 
 if (T is a leaf node) 
  renderObject(T) 
  renderBSP(near); 

query: given a viewpoint, produce an ordered list of (possibly 
split) objects from back to front: 
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BSP Trees : Viewpoint A 
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BSP Trees : Viewpoint A 
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BSP Trees : Viewpoint A 
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  decide independently at 
each tree vertex 

  not just left or right child! 
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BSP Trees : Viewpoint A 
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BSP Trees : Viewpoint A 
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BSP Trees : Viewpoint A 

F N 

F N 
F 

N 

N F 

1 

1 

26 

BSP Trees : Viewpoint A 

F N 
F N 

F N 

F N N F 

1 

2 

1 2 

27 

BSP Trees : Viewpoint A 

F N 

F 

N 
F N 

F N 

N F 

N F 

1 

2 

1 2 

28 

BSP Trees : Viewpoint A 

F N 

F 

N 
F N 

F N 

N F 

N F 

1 

2 

1 2 



29 

BSP Trees : Viewpoint A 
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BSP Trees : Viewpoint A 
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BSP Trees : Viewpoint A 
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BSP Trees : Viewpoint A 
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BSP Trees : Viewpoint B 
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BSP Trees : Viewpoint B 

N F 

F 

N F 

N 

F N 

1 

3 4 

2 

F N 

F N F N 

N F 5 

6 

7 

8 9 1 

2 

3 

4 

5 

6 

7 

9 

8 

35 

BSP Tree Traversal: Polygons 

•  split along the plane defined by any polygon 
from scene 

•  classify all polygons into positive or negative 
half-space of the plane 
•  if a polygon intersects plane, split polygon into 

two and classify them both 
•  recurse down the negative half-space 
•  recurse down the positive half-space 
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BSP Demo 

•  useful demo: 
http://symbolcraft.com/graphics/bsp 
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BSP Demo 

•  order of insertion can affect half-plane extent 
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Summary: BSP Trees 
•  pros: 

•  simple, elegant scheme 
•  correct version of painter’s algorithm back-to-front rendering 

approach 
•  was very popular for video games (but getting less so) 

•  cons: 
•  slow to construct tree: O(n log n) to split, sort 
•  splitting increases polygon count: O(n2) worst-case  
•  computationally intense preprocessing stage restricts algorithm to 

static scenes 
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The Z-Buffer Algorithm (mid-70’s) 

•  BSP trees proposed when memory was 
expensive 
•  first 512x512 framebuffer was >$50,000! 

•  Ed Catmull proposed a radical new 
approach called z-buffering 

•  the big idea: 
•  resolve visibility independently at each 

pixel 
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The Z-Buffer Algorithm 

•  we know how to rasterize polygons into an 
image discretized into pixels: 
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The Z-Buffer Algorithm 

•  what happens if multiple primitives occupy 
the same pixel on the screen? 
•  which is allowed to paint the pixel?  
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The Z-Buffer Algorithm 

•  idea: retain depth after projection transform 
•  each vertex maintains z coordinate  

•  relative to eye point 
•  can do this with canonical viewing volumes 

43 

The Z-Buffer Algorithm 
•  augment color framebuffer with Z-buffer or 

depth buffer which stores Z value at each 
pixel 
•  at frame beginning, initialize all pixel depths 

to ∞ 
•  when rasterizing, interpolate depth (Z) 

across polygon 
•  check Z-buffer before storing pixel color in 

framebuffer and storing depth in Z-buffer 
•  don’t write pixel if its Z value is more distant 

than the Z value already stored there 
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Interpolating Z 

•  barycentric coordinates 
•  interpolate Z like other 

planar parameters 
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Z-Buffer 

•  store (r,g,b,z) for each pixel 
•  typically 8+8+8+24 bits, can be more 

for all i,j { 
 Depth[i,j] = MAX_DEPTH 
 Image[i,j] = BACKGROUND_COLOUR 
}  
for all polygons P { 
  for all pixels in P { 
    if (Z_pixel < Depth[i,j]) { 
      Image[i,j] = C_pixel 
      Depth[i,j] = Z_pixel 
    }  
  }  
}  
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Depth Test Precision 

•  reminder: perspective transformation maps 
eye-space (view) z to NDC z 

•  thus: 

! 

E 0 A 0
0 F B 0
0 0 C D
0 0 "1 0

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

x
y
z
1

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

=

Ex + Az
Fy + Bz
Cz + D
"z

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

=

"
Ex
z

+ Az
) 

* 
+ 

, 

- 
. 

"
Fy
z

+ Bz
) 

* 
+ 

, 

- 
. 

" C +
D
z

) 

* 
+ 

, 

- 
. 

1

# 

$ 

% 
% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 
( 

! 

zNDC = " C +
D
zeye

# 

$ 
% % 

& 

' 
( ( 

47 

Depth Test Precision 
•  therefore, depth-buffer essentially stores 1/z,  

rather than z! 
•  issue with integer depth buffers 

• high precision for near objects 
•  low precision for far objects 

-zeye 

zNDC 

-n -f 48 

Depth Test Precision 
•  low precision can lead to depth fighting for far objects  

•  two different depths in eye space get mapped to same 
depth in framebuffer 

•  which object “wins” depends on drawing order and scan-
conversion  

•  gets worse for larger ratios f:n 
•  rule of thumb: f:n < 1000 for 24 bit depth buffer 

•  with 16 bits cannot discern millimeter differences in 
objects at 1 km distance 

•  demo: sjbaker.org/steve/omniv/
love_your_z_buffer.html 
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More: Integer Depth Buffer 
•  reminder from picking discussion 

•  depth lies in the NDC z range [0,1] 
•  format: multiply by 2^n -1 then round to nearest int 

•  where n = number of bits in depth buffer 
•  24 bit depth buffer = 2^24 = 16,777,216 possible 

values 
•  small numbers near, large numbers far 

•  consider depth from VCS:  (1<<N) * ( a + b / z ) 
•  N = number of bits of Z precision 
•  a = zFar / ( zFar - zNear ) 
•  b = zFar * zNear / ( zNear - zFar ) 
•   z = distance from the eye to the object 
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 Z-Buffer Algorithm Questions 

•  how much memory does the Z-buffer use? 
•  does the image rendered depend on the 

drawing order? 
•  does the time to render the image depend on 

the drawing order? 
•  how does Z-buffer load scale with visible 

polygons?  with framebuffer resolution? 
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Z-Buffer Pros 

•  simple!!! 
•  easy to implement in hardware 

•  hardware support in all graphics cards today 
•  polygons can be processed in arbitrary order 
•  easily handles polygon interpenetration 
•  enables deferred shading  

•  rasterize shading parameters (e.g., surface 
normal) and only shade final visible fragments 
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Z-Buffer Cons 
•  poor for scenes with high depth complexity 

•  need to render all polygons, even if 
most are invisible 

•  shared edges are handled inconsistently 
• ordering dependent 

eye 



53 

Z-Buffer Cons 
•  requires lots of memory  

•  (e.g. 1280x1024x32 bits) 
•  requires fast memory 

•  Read-Modify-Write in inner loop  
•  hard to simulate translucent polygons 

• we throw away color of polygons behind 
closest one 

• works if polygons ordered back-to-front 
• extra work throws away much of the speed 

advantage 
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Hidden Surface Removal 

•  two kinds of visibility algorithms 
•  object space methods 
•  image space methods 
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Object Space Algorithms 
•  determine visibility on object or polygon level 

•  using camera coordinates 
•  resolution independent 

•  explicitly compute visible portions of polygons 
•  early in pipeline 

•  after clipping 
•  requires depth-sorting 

•  painter’s algorithm 
•  BSP trees 
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Image Space Algorithms 
•  perform visibility test for in screen coordinates 

•  limited to resolution of display 
•  Z-buffer: check every pixel independently 

•  performed late in rendering pipeline 
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Projective Rendering Pipeline 

OCS - object coordinate system 
 

WCS - world coordinate system  
 

VCS - viewing coordinate system  
 

CCS - clipping coordinate system  
 

NDCS - normalized device coordinate system 
 

DCS - device coordinate system 

OCS WCS VCS 

CCS 

NDCS 

DCS 

modeling 
transformation 

viewing 
transformation 

projection 
transformation 

viewport 
transformation 

alter w  

/ w  

object world viewing 

device 

normalized 
device 

clipping 

perspective 
division 

glVertex3f(x,y,z) 

glTranslatef(x,y,z) 
glRotatef(th,x,y,z) 
.... 

gluLookAt(...) 

glFrustum(...) 

glutInitWindowSize(w,h) 
glViewport(x,y,a,b) 
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Rendering Pipeline 

Geometry 
Database 

Model/View 
Transform. Lighting Perspective 

Transform. Clipping 

Scan 
Conversion 

Depth 
Test Texturing Blending 

Frame- 
buffer 

OCS 
object 

WCS 
world 

VCS 
viewing 

CCS 
clipping 

NDCS 

normalized 
device 

SCS 
screen 

(2D) DCS 
device 

(3D) 

(4D) 

/w  
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Backface Culling 
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Back-Face Culling 

•  on the surface of a closed orientable 
manifold, polygons whose normals point 
away from the camera are always 
occluded: 

note: backface culling 
alone doesn’t solve the 
hidden-surface problem! 
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Back-Face Culling 

•  not rendering backfacing polygons improves 
performance 
•  by how much? 

•  reduces by about half the number of polygons 
to  be considered for each pixel 

•  optimization when appropriate 
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Back-Face Culling 
•  most objects in scene are typically “solid” 
•  rigorously: orientable closed manifolds 

•  orientable: must have two distinct sides 
•  cannot self-intersect  
•  a sphere is orientable since has  

two sides, 'inside' and 'outside'. 
•  a Mobius strip or a Klein bottle is 

not orientable  
•  closed: cannot “walk” from one  

side to the other 
•  sphere is closed manifold 
•  plane is not  
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Back-Face Culling 

•  examples of non-manifold objects: 
•  a single polygon 
•  a terrain or height field 
•  polyhedron w/ missing face 
•  anything with cracks or holes in boundary 
•  one-polygon thick lampshade 
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Back-face Culling: VCS 

y 

z 

first idea: 
 cull if  0<ZN

sometimes 
misses polygons that 
should be culled eye 
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Back-face Culling: NDCS 

y 

z eye 

VCS 

NDCS 

eye works to cull if 0>ZN
y 

z 
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Invisible Primitives 
•  why might a polygon be invisible? 

•  polygon outside the field of view / frustum 
•  solved by clipping 

•  polygon is backfacing 
•  solved by backface culling 

•  polygon is occluded by object(s) nearer the viewpoint 
•  solved by hidden surface removal 
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Blending 
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Rendering Pipeline 

Geometry 
Database 

Model/View 
Transform. Lighting Perspective 

Transform. Clipping 

Scan 
Conversion 

Depth 
Test Texturing Blending 

Frame- 
buffer 

Alpha and Premultiplication 
•  specify opacity with alpha channel α 

•   α=1: opaque, α=.5: translucent, α=0: transparent 
•  how to express a pixel is half covered by a red object? 

•  obvious way: store color independent from transparency (r,g,b,α) 
•  intuition: alpha as transparent colored glass 

•  100% transparency can be represented with many different RGB values 

•  pixel value is (1,0,0,.5) 
•  upside: easy to change opacity of image, very intuitive 
•  downside: compositing calculations are more difficult - not associative 

•  elegant way: premultiply by α so store (αr, αg, αb,α) 
•  intuition: alpha as screen/mesh 

•  RGB specifies how much color object contributes to scene 
•  alpha specifies how much object obscures whatever is behind it (coverage) 
•  alpha of .5 means half the pixel is covered by the color, half completely transparent 
•  only one 4-tuple represents 100% transparency: (0,0,0,0) 

•  pixel value is (.5, 0, 0, .5) 
•  upside: compositing calculations easy (& additive blending for glowing!) 
•  downside: less intuitive 70 

Alpha and Simple Compositing 
•  F is foreground, B is background, F over B 
•  premultiply math: uniform for each component, simple, linear 

•  R' = RF+(1-AF)*RB 
•  G' = GF+(1-AF)*GB 

•  B' = BF+(1-AF)*BB 

•  A' = AF+(1-AF)*AB 

•  associative: easy to chain together multiple operations 

•  non-premultiply math: trickier 
•  R' = (RF*AF + (1-AF)*RB*AB)/A' 
•  G' = (GF*AF + (1-AF)*GB*AB)/A' 
•  B' = (BF*AF + (1-AF)*BB*AB)/A' 
•  A' = AF+(1-AF)*AB 

•  don't need divide if F or B is opaque. but still… oof! 
•  chaining difficult, must avoid double-counting with intermediate ops 
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Alpha and Complex Compositing 
•  foreground color A, background color B 
•  how might you combine multiple elements? 

•  Compositing Digital Images, Porter and Duff, Siggraph '84 
•  pre-multiplied alpha allows all cases to be handled simply 



Alpha Examples 
•  blend white and clear equally (50% each) 

•  white is (1,1,1,1), clear is (0,0,0,0), black is (0,0,0,1) 
•  premultiplied: multiply componentwise by 50% and just add together 
•  (.5, .5, .5, .5) is indeed half-transparent white in premultiply format 

•  4-tuple would mean half-transparent grey in non-premultiply format 

•  premultiply allows both conventional blend and additive blend 
•  alpha 0 and RGB nonzero: glowing/luminescent 
•  (nice for particle systems, stay tuned) 

•  for more: see nice writeup from Alvy Ray Smith 
•  technical academy award for Smith, Catmull, Porter, Duff 
•  http://www.alvyray.com/Awards/AwardsAcademy96.htm 
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