University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2013

Tamara Munzner

Hidden Surfaces

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013

Clarification: Blinn-Phong Model

« only change vs Phong model is to have the specular
calculation to use (h*n) instead of (ver)

« full Blinn-Phong lighting model equation has

ambient, diffuse, specular terms
#lights

Itotal = kaIambient + EII (kd (n ¢ ll) + ks(n ¢ hi)nshiny)
i=1

* just like full Phong model equation
#lights

Itotal = kaIambient + EII (kd (n ¢ ll) + ks(V ¢ ri)nshiny)
i=1

Reading for Hidden Surfaces

 FCG Sect 8.2.3 Z-Buffer

« FCG Sect 12.4 BSP Trees
* (8.1, 8.2 2nd ed)

* FCG Sect 3.4 Alpha Compositing
« (N/A 2M ed)

Hidden Surface Removal

Occlusion Painter’ s Algorithm

for most interesting scenes, some polygons simple: render the polygons from back to
overlap front, “painting over” previous polygons

= @& = %Bv

 draw blue, then green, then orange
« will this work in the general case?

to render the correct image, we need to
determine which polygons occlude which

Painter’ s Algorithm: Problems Analytic Visibility Algorithms

intersecting polygons present a problem + early visibility algorithms computed the set of visible polygon

fragments directly, then rendered the fragments to a display:
even non-intersecting polygons can form a
cycle with no valid visibility order:

Analytic Visibility Algorithms Analytic Visibility Algorithms

» what is the minimum worst-case cost of * s0, for about a decade (late 60s to late 70s)
computing the fragments for a scene there was intense interest in finding efficient
composed of n polygons? algorithms for hidden surface removal

* answer: - we’ Il talk about one:

O(n?) * Binary Space Partition (BSP) Trees

Binary Space Partition Trees (1979) Creating BSP Trees: Objects

« BSP Tree: partition space with binary tree of
planes
* idea: divide space recursively into half-spaces
by choosing splitting planes that separate
objects in scene
* preprocessing: create binary tree of planes

* runtime: correctly traversing this tree
enumerates objects from back to front

Creating BSP Trees: Objects

Q
ﬁg RN

% cE6ee Eﬁiﬁ%
t e

Creating BSP Trees: Objects

weel oo et ©

Creating BSP Trees: Objects

9,

y e’
PEPATRTA S

Creating BSP Trees: Objects

Splitting Objects

* no bunnies were harmed in previous example

* but what if a splitting plane passes through
an object?

« split the object; give half to each node

17

Traversing BSP Trees

* tree creation independent of viewpoint

* preprocessing step
* tree traversal uses viewpoint

+ runtime, happens for many different viewpoints
» each plane divides world into near and far

- for given viewpoint, decide which side is near and
which is far

+ check which side of plane viewpoint is on
independently for each tree vertex

* tree traversal differs depending on viewpoint!
* recursive algorithm

* recurse on far side

» draw object

* recurse on near side
18

Traversing BSP Trees

query: given a viewpoint, produce an ordered list of (possibly
split) objects from back to front:

renderBSP (BSPtree *T)

BSPtree *near, *far;

if (eye on left side of T->plane)
near = T->left; far = T->right;

else
near = T->right; far = T->left;

renderBSP (far) ;

if (T is a leaf node)
renderObject (T)

renderBSP (near) ;

19

BSP Trees : Viewpoint A

BSP Trees : Viewpoint A BSP Trees : Viewpoint A

! LA}
T
= decide independently at "ﬁ.g :
each tree vertex P
= not just left or right child!

BSP Trees : Viewpoint A

< <
d wd
< =
o o
Q <3
S S
o 2
> >
" "
@ @
o o
- -
o o
7)) n
o o

BSP Trees : Viewpoint A
BSP Trees : Viewpoint A

< <
d wd
< =
o o
Q <3
S S
o 2
> >
" "
@ @
o o
- -
o o
7)) n
o o

BSP Trees : Viewpoint A
BSP Trees : Viewpoint A

BSP Trees : Viewpoint B

BSP Trees : Viewpoint B

n

<
- 1

F < g —

=
W_

BSP Tree Traversal: Polygons

split along the plane defined by any polygon
from scene

classify all polygons into positive or negative
half-space of the plane

« if a polygon intersects plane, split polygon into
two and classify them both

recurse down the negative half-space
recurse down the positive half-space

BSP Demo

» useful demo:
http://symbolcraft.com/qgraphics/bsp

BSP Demo

- order of insertion can affect half-plane extent

37

Summary: BSP Trees

* pros:

» simple, elegant scheme

+ correct version of painter’s algorithm back-to-front rendering
approach

« was very popular for video games (but getting less so)

* cons:

+ slow to construct tree: O(n log n) to split, sort
- splitting increases polygon count: O(n2) worst-case

« computationally intense preprocessing stage restricts algorithm to
static scenes

38

The Z-Buffer Algorithm (mid-70’ s)

« BSP trees proposed when memory was
expensive

« first 512x512 framebuffer was >$50,000!

* Ed Catmull proposed a radical new
approach called z-buffering

* the big idea:

* resolve visibility independently at each
pixel

39

The Z-Buffer Algorithm

« we know how to rasterize polygons into an
image discretized into pixels:

40

The Z-Buffer Algorithm

« what happens if multiple primitives occupy
the same pixel on the screen?

» which is allowed to paint the pixel?

U

41

The Z-Buffer Algorithm

* idea: retain depth after projection transform
» each vertex maintains z coordinate
* relative to eye point
« can do this with canonical viewing volumes

42

The Z-Buffer Algorithm

« augment color framebuffer with Z-buffer or
depth buffer which stores Z value at each
pixel

- at frame beginning, initialize all pixel depths
to «

« when rasterizing, interpolate depth (Z)
across polygon

 check Z-buffer before storing pixel color in
framebuffer and storing depth in Z-buffer

» don’t write pixel if its Z value is more distant
than the Z value already stored there

43

Interpolating Z

* barycentric coordinates

* interpolate Z like other
planar parameters

44

Z-Buffer

- store (r,g,b,z) for each pixel

* typically 8+8+8+24 bits, can be more

for all i,j {
Depth[i,j] = MAX DEPTH
Image[i,j] = BACKGROUND_ COLOUR
}
for all polygons P {
for all pixels in P {
if (Z_pixel < Depth[i,]j]) {
Image[i,j] C_pixel
Depth[i,j] Z pixel
}
}
}

45

[Zea)
=4 Az
E 0 A O0Olx Ex+ Az Z
O F B 0|yl (Fy+Bz —(Q+Bz)
0 0 ¢ D|z| |cz+D| | \ b
0 0 -1 of1 —z -(C+;)
1
D
* thus: z,.=-C+—

Depth Test Precision

* reminder: perspective transformation maps

eye-space (view) z to NDC z

<

eye

46

Depth Test Precision

- therefore, depth-buffer essentially stores 1/z,
rather than z!

* issue with integer depth buffers
* high precision for near objects
* low precision for far objects

ZNDC

47

Depth Test Precision

low precision can lead to depth fighting for far objects

« two different depths in eye space get mapped to same
depth in framebuffer

» which object “wins” depends on drawing order and scan-
conversion

gets worse for larger ratios f:n

* rule of thumb: f:n < 1000 for 24 bit depth buffer
with 16 bits cannot discern millimeter differences in
objects at 1 km distance

demo: sjbaker.org/steve/omniv/
love_your_z_buffer.html

48

More: Integer Depth Buffer

reminder from picking discussion

 depth lies in the NDC z range [0,1]

« format: multiply by 2*n -1 then round to nearest int
» where n = number of bits in depth buffer

24 bit depth buffer = 2224 = 16,777,216 possible

values

» small numbers near, large numbers far

consider depth from VCS: (1<<N)*(a+b/z)

* N = number of bits of Z precision

* a=zFar/ (zFar - zNear)

* b =zFar * zNear / (zNear - zFar)

« z = distance from the eye to the object
49

Z-Buffer Algorithm Questions

how much memory does the Z-buffer use?

does the image rendered depend on the
drawing order?

does the time to render the image depend on
the drawing order?

how does Z-buffer load scale with visible
polygons? with framebuffer resolution?

50

Z-Buffer Pros

simple!!!

easy to implement in hardware

 hardware support in all graphics cards today
polygons can be processed in arbitrary order
easily handles polygon interpenetration
enables deferred shading

- rasterize shading parameters (e.g., surface
normal) and only shade final visible fragments

51

Z-Buffer Cons

poor for scenes with high depth complexity

* need to render all polygons, even if
most are invisible

=i

eye

shared edges are handled inconsistently
* ordering dependent

52

Z-Buffer Cons

* requires lots of memory
* (e.g. 1280x1024x32 bits)
* requires fast memory
» Read-Modify-Write in inner loop
* hard to simulate translucent polygons

« we throw away color of polygons behind
closest one

 works if polygons ordered back-to-front

« extra work throws away much of the speed
advantage

53

Hidden Surface Removal

» two kinds of visibility algorithms
* object space methods
* image space methods

54

Object Space Algorithms

determine visibility on object or polygon level
* using camera coordinates

resolution independent

« explicitly compute visible portions of polygons
early in pipeline

- after clipping

requires depth-sorting

* painter’s algorithm

* BSP trees

55

Image Space Algorithms

 perform visibility test for in screen coordinates
* limited to resolution of display
« Z-buffer: check every pixel independently

+ performed late in rendering pipeline

56

object

OoCs

Projective Rendering Pipeline

glVertex3f(x,y,z)

world
WCS

viewing

VCS

alter w

glFrustum(...)

—

transformation

modeling

viewing
transformation

projection

transformation

glTranslatef(x,y,z)
dglRotatef(th,x,y,z)

gluLookAt(...)

OCS - object coordinate system

glutinitWindowSize(w,h
WCS - world coordinate system glViewport(x,y,a,b)

VCS - viewing coordinate system

CCS - clipping coordinate system

NDCS - normalized device coordinate system

DCS - device coordinate system

Iw

perspective
division

clipping
CCS

normalized

device
NDCS

viewport

transformation

|

device
DCS

57

Rendering Pipeline

object world viewing clipping
CS WCS VCs cCS
Geometry | |Model/View, L | Perspective — | [
Database Transform. Lighting Transform.| | Clipping
(4D)
normalized
device
NDCS
screen
device SCS
pcs (3D) 2D)
.| Scan .||l Depth [. Frame-
Conversioni" Al Test " Blending buffer

58

Backface Culling

59

Back-Face Culling

* on the surface of a closed orientable
manifold, polygons whose normals point
away from the camera are always

occluded:

—

note: backface culling

alone doesn’ t solve the
hidden-surface problem!

60

Back-Face Culling

 not rendering backfacing polygons improves
performance

* by how much?

* reduces by about half the number of polygons
to be considered for each pixel

 optimization when appropriate

Back-Face Culling

» most objects in scene are typically “solid”
 rigorously: orientable closed manifolds

+ orientable: must have two distinct sides
 cannot self-intersect
+ a sphere is orientable since has
two sides, 'inside' and 'outside'.
* a Mobius strip or a Klein bottle is
not orientable
 closed: cannot “walk” from one
side to the other
 sphere is closed manifold
 plane is not

Back-Face Culling

« examples of non-manifold objects:
 a single polygon
+ a terrain or height field
* polyhedron w/ missing face
* anything with cracks or holes in boundary
* one-polygon thick lampshade

Back-face Culling: VCS

first idea:
cullit N, <0

sometimes
misses polygons that
should be culled

Back-face Culling: NDCS

.
zZ eye

t

y
)E/ works to cullif N, >0

Invisible Primitives

» why might a polygon be invisible?
 polygon outside the field of view / frustum
* solved by clipping
 polygon is backfacing
* solved by backface culling
+ polygon is occluded by object(s) nearer the viewpoint
* solved by hidden surface removal

ICANHASCHEEZE URGERCOMIES & e

Blending

Rendering Pipeline

Perspectiv

Model/View
>
Transform.

Transform.

Geometry
Database

Lighting Clipping

Frame-

Scan
buffer

Conversion Blending

Texturing

Alpha and Premultiplication

specify opacity with alpha channel o
* o=1: opaque, a=.5: translucent, a=0: transparent
how to express a pixel is half covered by a red object?
» obvious way: store color independent from transparency (r,g,b,a)
* intuition: alpha as transparent colored glass
+ 100% transparency can be represented with many different RGB values
+ pixel value is (1,0,0,.5)
+ upside: easy to change opacity of image, very intuitive
» downside: compositing calculations are more difficult - not associative
 elegant way: premultiply by a so store (ar, ag, ab,a)

* intuition: alpha as screen/mesh
* RGB specifies how much color object contributes to scene
« alpha specifies how much object obscures whatever is behind it (coverage)
« alpha of .5 means half the pixel is covered by the color, half completely transparent
+ only one 4-tuple represents 100% transparency: (0,0,0,0)

 pixel value is (.5, 0, 0, .5)
+ upside: compositing calculations easy (& additive blending for glowing!)

» downside: less intuitive 70

Alpha and Simple Compositing

» Fis foreground, B is background, F over B
+ premultiply math: uniform for each component, simple, linear
R' = Re+(1-Ap)Rg
G' = Ge+(1-Ar)*Gy
B' = Be+(1-A¢)"Bg
A = Act(1-Ag)Ag
associative: easy to chain together multiple operations
* non-premultiply math: trickier
R'= (R*A: + (1-Ap)*Rg*Ag)/A’
G' = (G* A + (1-Ap)*Gg*Ag)/A
B' = (BL*Ag + (1-Ag)*Bg*Ag)/A’
A= Ac+(1-Ap)*Ag
don't need divide if F or B is opaque. but still... oof!
chaining difficult, must avoid double-counting with intermediate ops

71

Alpha and Complex Compositing
 foreground color A, background color B
* how might you combine multiple elements?
» Compositing Digital Images, Porter and Duff, Siggraph '84
« pre-multiplied alpha allows all cases to be handled simply
A xor B

A atop B

A over B AoutB

4
b4

s

o8

Partially
transparent »
AandB |

Conceptual
sub-pixel
overlay

Alpha Examples

* blend white and clear equally (50% each)
« white is (1,1,1,1), clear is (0,0,0,0), black is (0,0,0,1)
« premultiplied: multiply componentwise by 50% and just add together

* (.5,.5, .5, .5) is indeed half-transparent white in premultiply format
* 4-tuple would mean half-transparent grey in non-premultiply format

* premultiply allows both conventional blend and additive blend
« alpha 0 and RGB nonzero: glowing/luminescent
 (nice for particle systems, stay tuned)
+ for more: see nice writeup from Alvy Ray Smith
+ technical academy award for Smith, Catmull, Porter, Duff
* http://www.alvyray.com/Awards/AwardsAcademy96.htm

73

