
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013

Final Review

University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2013

Tamara Munzner

2

Final

•  exam notes
•  exam will be timed for 2.5 hours, but reserve

entire 3-hour block of time just in case
•  closed book, closed notes
•  except for 2-sided 8.5”x11” sheet of

handwritten notes
• ok to staple midterm sheet + new one back to

back
•  calculator: a good idea, but not required

• graphical OK, smartphones etc not ok
•  IDs out and face up

3

Final Emphasis
•  covers entire course
•  includes material from

before midterm
•  transformations,

viewing/picking
•  but heavier weighting

for material after last
midterm

•  post-midterm topics:
•  lighting/shading
•  advanced rendering
•  collision
•  rasterization
•  hidden surfaces /

blending
•  textures/procedural
•  clipping
•  color
•  curves
•  visualization

Sample Final
•  solutions now posted

•  Spring 06-07 (label was off by one)
•  note some material not covered this time

•  projection types like cavalier/cabinet
•  Q1b, Q1c,

•  antialiasing
•  Q1d, Q1l, Q12

•  animation
•  image-based rendering

•  Q1g

•  scientific visualization
•  Q14

4

5

Studying Advice

•  do problems!
•  work through old homeworks, exams

6

Reading from OpenGL Red Book
•  1: Introduction to OpenGL
•  2: State Management and Drawing Geometric Objects
•  3: Viewing
•  4: Display Lists
•  5: Color
•  6: Lighting
•  9: Texture Mapping
•  12: Selection and Feedback
•  13: Now That You Know

•  only section Object Selection Using the Back Buffer
•  Appendix: Basics of GLUT (Aux in v 1.1)
•  Appendix: Homogeneous Coordinates and Transformation

Matrices

7

Reading from Shirley: Foundations of CG
•  1: Intro *
•  2: Misc Math *
•  3: Raster Algs *

•  through 3.3

•  4: Ray Tracing *
•  5: Linear Algebra *

•  except for 5.4
•  6: Transforms *

•  except 6.1.6
•  7: Viewing *
•  8: Graphics Pipeline *

•  8.1 through 8.1.6, 8.2.3-8.2.5,
8.2.7, 8.4

•  10: Surface Shading *

•  11: Texture Mapping *
•  13: More Ray Tracing *

•  only 13.1
•  12: Data Structures *

•  only 12.2-12.4
•  15: Curves and Surfaces *
•  17: Computer Animation *

•  only 17.6-17.7

•  21: Color *
•  22: Visual Perception *

•  only 22.2.2 and 22.2.4
•  27: Visualization *

8

Review – Fast!!

9

Review: Rendering Capabilities

www.siggraph.org/education/materials/HyperGraph/shutbug.htm

10

Review: Rendering Pipeline

Geometry
Database

Model/View
Transform. Lighting Perspective

Transform. Clipping

Scan
Conversion

Depth
Test Texturing Blending

Frame-
buffer

11

Review: OpenGL

void display()
{
 glClearColor(0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(0.0, 1.0, 0.0);
 glBegin(GL_POLYGON);
 glVertex3f(0.25, 0.25, -0.5);
 glVertex3f(0.75, 0.25, -0.5);
 glVertex3f(0.75, 0.75, -0.5);
 glVertex3f(0.25, 0.75, -0.5);
 glEnd();
 glFlush();
}

•  pipeline processing, set state as needed

12

Review: Event-Driven Programming

•  main loop not under your control
•  vs. procedural

•  control flow through event callbacks
•  redraw the window now
•  key was pressed
•  mouse moved

•  callback functions called from main loop
when events occur
•  mouse/keyboard state setting vs. redrawing

13

Review: 2D Rotation

θ

(x, y)

(x′, y′)
x′ = x cos(θ) - y sin(θ)
y′ = x sin(θ) + y cos(θ)

  counterclockwise, RHS

() ()
() () !

"

#
$
%

&
!
"

#
$
%

& '
=!

"

#
$
%

&

y
x

y
x

((

((

cossin
sincos

'
'

14

Review: 2D Rotation From Trig Identities

x = r cos (φ)
y = r sin (φ)
x′ = r cos (φ + θ)
y′ = r sin (φ + θ)

Trig Identity…
x′ = r cos(φ) cos(θ) – r sin(φ) sin(θ)
y′ = r sin(φ) cos(θ) + r cos(φ) sin(θ)

Substitute…
x ′ = x cos(θ) - y sin(θ)
y ′ = x sin(θ) + y cos(θ)

θ

(x, y)

(x′, y′)

φ

15

Review: 2D Rotation: Another Derivation

!!

!!

cossin'
sincos'
yxy
yxx

+=

"=

x

x '

!

x'= A " B

B

A

(x′,y′)

(x,y)

!

A = x cos"
θ

x

16

Review: Shear, Reflection
•  shear along x axis

•  push points to right in proportion to height

•  reflect across x axis
•  mirror

x

y

x

y

!
"

#
$
%

&
+!
"

#
$
%

&
!
"

#
$
%

&
=!

"

#
$
%

&
'

'

0
0

10
1

y
xsh

y
x x

!
"

#
$
%

&
+!
"

#
$
%

&
!
"

#
$
%

&

'
=!

"

#
$
%

&
(

(

0
0

10
01

y
x

y
x

x x

17

Review: 2D Transformations

!
"

#
$
%

&
=!

"

#
$
%

&

+

+
=!

"

#
$
%

&
+!
"

#
$
%

&

'
'
y
x

by
ax

b
a

y
x

() ()
() () !

"

#
$
%

&
!
"

#
$
%

& '
=!

"

#
$
%

&

y
x

y
x

((

((

cossin
sincos

'
'

!
"

#
$
%

&
!
"

#
$
%

&
=!

"

#
$
%

&

y
x

b
a

y
x

0
0

'
'

scaling matrix rotation matrix

!
"

#
$
%

&
=!

"

#
$
%

&
!
"

#
$
%

&

'
'
y
x

y
x

dc
ba

translation multiplication matrix??

vector addition

matrix multiplication matrix multiplication

),(ba(x,y)

(x′,y′)

18

Review: Linear Transformations
•  linear transformations are combinations of

•  shear
•  scale
•  rotate
•  reflect

•  properties of linear transformations
•  satisifes T(sx+ty) = s T(x) + t T(y)
•  origin maps to origin
•  lines map to lines
•  parallel lines remain parallel
•  ratios are preserved
•  closed under composition

!
"

#
$
%

&
!
"

#
$
%

&
=!

"

#
$
%

&

y
x

dc
ba

y
x
'
'

dycxy
byaxx

+=

+=

'
'

19

Review: Affine Transformations
•  affine transforms are combinations of

•  linear transformations
•  translations

•  properties of affine transformations
•  origin does not necessarily map to origin
•  lines map to lines
•  parallel lines remain parallel
•  ratios are preserved
•  closed under composition

!
!
!

"

#

$
$
$

%

&

!
!
!

"

#

$
$
$

%

&

=

!
!
!

"

#

$
$
$

%

&

w
y
x

fed
cba

w
y
x

100
'
'

20

Review: Homogeneous Coordinates

•  homogenize to convert homog. 3D
point to cartesian 2D point:
•  divide by w to get (x/w, y/w, 1)
•  projects line to point onto w=1 plane
•  like normalizing, one dimension up

•  when w=0, consider it as direction
•  points at infinity
•  these points cannot be homogenized
•  lies on x-y plane

•  (0,0,0) is undefined

),,(wyx

homogeneous

),(
w
y

w
x

cartesian

/ w

x
y

w

w=1

!
!
!

"

#

$
$
$

%

&

'

'

w
wy
wx

!
!
!

"

#

$
$
$

%

&

1
y
x

21

Review: 3D Homog Transformations

•  use 4x4 matrices for 3D transformations

!
!
!
!

"

#

$
$
$
$

%

&

!
!
!
!

"

#

$
$
$
$

%

&

=

!
!
!
!

"

#

$
$
$
$

%

&

11
1

1
1

1
'
'
'

z
y
x

c
b
a

z
y
x
translate(a,b,c)

!
!
!
!

"

#

$
$
$
$

%

&

!
!
!
!

"

#

$
$
$
$

%

&

'
=

!
!
!
!

"

#

$
$
$
$

%

&

11
cossin
sincos

1

1
'
'
'

z
y
x

z
y
x

((

((

),(Rotate !x

!
!
!
!

"

#

$
$
$
$

%

&

!
!
!
!

"

#

$
$
$
$

%

&

=

!
!
!
!

"

#

$
$
$
$

%

&

111
'
'
'

z
y
x

c
b

a

z
y
x

scale(a,b,c)

!
!
!
!

"

#

$
$
$
$

%

&

'

1
cossin

1
sincos

((

((

),(Rotate !y

!
!
!
!

"

#

$
$
$
$

%

& '

1
1

cossin
sincos
((

((

),(Rotate !z

22

Review: 3D Shear

•  general shear

•  "x-shear" usually means shear along x in direction of some other axis
•  correction: not shear along some axis in direction of x
•  to avoid ambiguity, always say "shear along <axis> in direction of <axis>"

!
!
!
!

"

#

$
$
$
$

%

&

=

1000
01
01
01

),,,,,(
hyzhxz

hzyhxy
hzxhyx

hzyhzxhyzhyxhxzhxyshear

!

shearAlongYinDirectionOfX(h) =

1 0 0 0
h 1 0 0
0 0 1 0
0 0 0 1

"

$
$
$
$

%

&

'
'
'
'

!

shearAlongYinDirectionOfZ(h) =

1 0 0 0
0 1 h 0
0 0 1 0
0 0 0 1

"

$
$
$
$

%

&

'
'
'
'

!

shearAlongXinDirectionOfY(h) =

1 h 0 0
0 1 0 0
0 0 1 0
0 0 0 1

"

$
$
$
$

%

&

'
'
'
'

!

shearAlongXinDirectionOfZ(h) =

1 0 h 0
0 1 0 0
0 0 1 0
0 0 0 1

"

$
$
$
$

%

&

'
'
'
'

!

shearAlongZinDirectionOfX(h) =

1 0 0 0
0 1 0 0
h 0 1 0
0 0 0 1

"

$
$
$
$

%

&

'
'
'
'

!

shearAlongZinDirectionOfY(h) =

1 0 0 0
0 1 0 0
0 h 1 0
0 0 0 1

"

$
$
$
$

%

&

'
'
'
'

23

Review: Composing Transformations

Ta Tb = Tb Ta, but Ra Rb != Rb Ra and Ta Rb != Rb Ta
•  translations commute
•  rotations around same axis commute
•  rotations around different axes do not commute
•  rotations and translations do not commute

24

!

p'= TRp
Review: Composing Transformations

•  which direction to read?
•  right to left

•  interpret operations wrt fixed coordinates
•  moving object

•  left to right
•  interpret operations wrt local coordinates
•  changing coordinate system
•  OpenGL updates current matrix with postmultiply

•  glTranslatef(2,3,0);
•  glRotatef(-90,0,0,1);
•  glVertexf(1,1,1);

•  specify vector last, in final coordinate system
•  first matrix to affect it is specified second-to-last

OpenGL pipeline ordering!

25

(2,1)

(1,1)

(1,1)

left to right: changing coordinate system

right to left: moving object

translate by (-1,0)

Review: Interpreting Transformations

•  same relative position between object and
basis vectors

intuitive?

OpenGL

!

p'= TRp

26

Review: General Transform Composition

•  transformation of geometry into coordinate
system where operation becomes simpler
•  typically translate to origin

•  perform operation

•  transform geometry back to original
coordinate system

Review: Arbitrary Rotation

•  arbitrary rotation: change of basis
•  given two orthonormal coordinate systems XYZ and ABC

•  A’s location in the XYZ coordinate system is (ax, ay, az, 1), ...
•  transformation from one to the other is matrix R whose

columns are A,B,C:

Y

Z
X

Y

Z
X
(cx, cy, cz, 1)

(ax, ay, az, 1)
(bx, by, bz, 1)

!

R(X) =

ax bx c x 0
ay by c y 0
az bz cz 0
0 0 0 1

"

$
$
$
$

%

&

'
'
'
'

1
0
0
1

"

$
$
$
$

%

&

'
'
'
'

= (ax,ay ,az,1) = A

28

Review: Transformation Hierarchies
•  transforms apply to graph nodes beneath them
•  design structure so that object doesn’t fall apart
•  instancing

29

glPushMatrix()

glPopMatrix()
A

B

C

A

B

C

A

B

C

C

glScale3f(2,2,2)

D = C scale(2,2,2) trans(1,0,0)

A

B

C

D

DrawSquare()
glTranslate3f(1,0,0)

DrawSquare()

Review: Matrix Stacks
•  OpenGL matrix calls postmultiply matrix M onto current

matrix P, overwrite it to be PM
•  or can save intermediate states with stack
•  no need to compute inverse matrices all the time
•  modularize changes to pipeline state
•  avoids accumulation of numerical errors

30

Review: Display Lists
•  precompile/cache block of OpenGL code for reuse

•  usually more efficient than immediate mode
•  exact optimizations depend on driver

•  good for multiple instances of same object
•  but cannot change contents, not parametrizable

•  good for static objects redrawn often
•  display lists persist across multiple frames
•  interactive graphics: objects redrawn every frame from

new viewpoint from moving camera
•  can be nested hierarchically

•  snowman example
•  3x performance improvement, 36K polys
•  http://www.lighthouse3d.com/opengl/displaylists

31

Review: Normals

•  polygon:

•  assume vertices ordered CCW when viewed
from visible side of polygon

•  normal for a vertex
•  specify polygon orientation
•  used for lighting
•  supplied by model (i.e., sphere),

or computed from neighboring polygons

1P

N

2P

3P
)()(1312 PPPPN !"!=

N

32

Review: Transforming Normals

•  cannot transform normals using same
matrix as points
•  nonuniform scaling would cause to be not

perpendicular to desired plane!

MPP ='P
N QNN ='

given M,
what should Q be?

()T1MQ != inverse transpose of the modelling transformation

33

Review: Camera Motion

•  rotate/translate/scale difficult to control
•  arbitrary viewing position

•  eye point, gaze/lookat direction, up vector

Peye

Pref

up
view

eye

lookat y

z

x
WCS

34

Review: Constructing Lookat

•  translate from origin to eye
•  rotate view vector (lookat – eye) to w axis
•  rotate around w to bring up into vw-plane

y

z

x
WCS

v

u

VCS

Peye
w

Pref

up
view

eye

lookat

35

Review: V2W vs. W2V

•  MV2W=TR

•  we derived position of camera as object in world
•  invert for gluLookAt: go from world to camera!

•  MW2V=(MV2W)-1
=R-1T-1

 !

T
"1 =

1 0 0 "e
x

0 1 0 "e
y

0 0 1 "e
z

0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

!

R
"1 =

u
x

u
y

u
z
0

v
x

v
y

v
z
0

w
x
w
y
w
z
0

0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

!

T=

1 0 0 e
x

0 1 0 e
y

0 0 1 e
z

0 0 0 1

"

$
$
$
$

%

&

'
'
'
'

!

R =

u
x
v
x
w
x
0

u
y
v
y
w
y
0

u
z
v
z
w
z
0

0 0 0 1

"

$
$
$
$

%

&

'
'
'
'

=

ux uy uz !ex "ux +!ey "uy +!ez "uz
vx vy vz !ex "vx +!ey "vy +!ez "vz
wx wy wz !ex "wx +!ey "wy +!ez "wz

0 0 0 1

#

$

%
%
%
%
%

&

'

(
(
(
(
(

MW2V =

ux uy uz !e•u

vx vy vz !e•v

wx wy wz !e•w

0 0 0 1

"

#

$
$
$
$
$

%

&

'
'
'
'
'

36

Review: Graphics Cameras

•  real pinhole camera: image inverted

image
plane

eye
 point

  computer graphics camera: convenient equivalent

image
plane

eye
 point

center of
projection

37

Review: Basic Perspective Projection

similar triangles !=
z
y

d
y'

z
dyy !

='

z

P(x,y,z)

P(x’,y’,z’)

z’=d

y

z
dxx !

=' dz ='

!
!
!

"

#

$
$
$

%

&

0100
0100
0010
0001

d
!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$

%

&

d

dz
y
dz
x

/

/

!
!
!

"

#

$
$
$

%

&

dz
z
y
x

/

homogeneous
coords

38

Review: From VCS to NDCS

x

z

NDCS y

(-1,-1,-1)

(1,1,1)

orthographic view volume

x

z

VCS

y
x=left

y=top

x=right

z=-far
z=-near y=bottom

perspective view volume

x=left

x=right

y=top

y=bottom z=-near z=-far x
VCS

y

•  orthographic camera
•  center of projection at

infinity
•  no perspective

convergence

39

Review: Orthographic Derivation

•  scale, translate, reflect for new coord sys

x

z

VCS

y
x=left

y=top

x=right

z=-far
z=-near y=bottom

x

z

NDCS

y

(-1,-1,-1)

(1,1,1)

40

Review: Orthographic Derivation

•  scale, translate, reflect for new coord sys

P

nearfar
nearfar

nearfar

bottop
bottop

bottop

leftright
leftright

leftright

P

!
!
!
!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$
$
$
$

%

&

'

+
'

'

'

'

+
'

'

'

+
'

'

=

1000

200

020

002

'

41

Review: Asymmetric Frusta

•  our formulation allows asymmetry
•  why bother? binocular stereo

•  view vector not perpendicular to view plane

Right Eye

Left Eye

42

Review: Field-of-View Formulation

•  FOV in one direction + aspect ratio (w/h)
•  determines FOV in other direction
•  also set near, far (reasonably intuitive)

-z

x

Frustum

z=-n z=-f

α
fovx/2

fovy/2
h

w

43

Review: Projection Normalization

•  warp perspective view volume to orthogonal
view volume

•  render all scenes with orthographic projection!
• aka perspective warp

Z

x

z=α z=d

Z

x

z=0 z=d

44

Review: Separate Warp From Homogenization

•  warp requires only standard matrix multiply
•  distort such that orthographic projection of

distorted objects is desired persp projection
• w is changed

•  clip after warp, before divide
•  division by w: homogenization

CCS
NDCS

alter w / w

VCS
projection

transformation

viewing normalized
device

clipping

perspective
division

V2C C2N

45

x

z

NDCS

y

(-1,-1,-1)

(1,1,1) x=left

x=right

y=top

y=bottom z=-near z=-far x

VCS

y

z

!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$

%

&

'
'

'

'

+'
'

+

'

'

+

'

0100

2)(00

020

002

nf
fn

nf
nf
bt
bt

bt
n

lr
lr

lr
n

Review: Perspective Derivation

•  shear
•  scale
•  projection-normalization

46

Review: N2D Transformation

!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$

%

&

+

'+'

'+

=

!
!
!
!

"

#

$
$
$
$

%

&

!
!
!
!

"

#

$
$
$
$

%

&

'

!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$

%

&

!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$

%

&

'

'

=

!
!
!
!

"

#

$
$
$
$

%

&

1
2

)1(
2

1)1(
2

1)1(

11000
0100
0010
0001

1000

0
2

00

00
2

0

000
2

1000
2

100
2
1

2
010

2
1

2
001

1 N

N

N

N

N

N

D

D

D

zdepth

yheight

xwidth

z
y
x

depth

height

width

depth

height

width

z
y
x

x
y

viewport
NDC

0 500

300

0

-1
-1

1

1
height

width

x

y

reminder:
NDC z range is -1 to 1

Display z range is 0 to 1.
glDepthRange(n,f) can constrain
further, but depth = 1 is both
max and default

47

Review: Projective Rendering Pipeline

OCS - object coordinate system

WCS - world coordinate system

VCS - viewing coordinate system

CCS - clipping coordinate system

NDCS - normalized device coordinate system

DCS - device coordinate system

OCS WCS VCS

CCS

NDCS

DCS

modeling
transformation

viewing
transformation

projection
transformation

viewport
transformation

alter w

/ w

object world viewing

device

normalized
device

clipping

perspective
division

glVertex3f(x,y,z)

glTranslatef(x,y,z)
glRotatef(a,x,y,z)
....

gluLookAt(...)

glFrustum(...)

glutInitWindowSize(w,h)
glViewport(x,y,a,b)

O2W W2V V2C

N2D

C2N

following pipeline from top/left to
bottom/right: moving object POV

48

Review: OpenGL Example

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45, 1.0, 0.1, 200.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef(0.0, 0.0, -5.0);
 glPushMatrix()
 glTranslate(4, 4, 0);
 glutSolidTeapot(1);
 glPopMatrix();
 glTranslate(2, 2, 0);
 glutSolidTeapot(1); OCS2

O2W VCS
modeling
transformation

viewing
transformation

projection
transformation

object world viewing W2V V2C WCS

•  transformations that
are applied to object
first are specified
last

OCS1

WCS

VCS

W2O

W2O

CCS
clipping

CCS

OCS

go back from end of pipeline to beginning: coord frame POV!

V2W

49

NDCS

object

world

viewing

OCS

WCS

VCS
W2V

O2W

read down: transforming
between coordinate frames,
from frame A to frame B

V2N

DCS

normalized device

display

read up: transforming points,
up from frame B coords to
frame A coords

V2W

W2O

N2V

D2N N2D

Review: Coord Sys: Frame vs Point

OpenGL command order

pipeline interpretation

gluLookAt(...)

glViewport(x,y,a,b)

glFrustum(...)

glVertex3f(x,y,z)

glRotatef(a,x,y,z)

50

Review: Coord Sys: Frame vs Point
•  is gluLookat viewing transformation V2W or W2V?

depends on which way you read!
•  coordinate frames: V2W

•  takes you from view to world coordinate frame
•  points/objects: W2V

•  point is transformed from world to view coords when
multiply by gluLookAt matrix

•  H2 uses the object/pipeline POV
•  Q1/4 is W2V (gluLookAt)
•  Q2/5-6 is V2N (glFrustum)
•  Q3/7 is N2D (glViewport)

51

Review: Picking Methods

•  manual ray intersection

•  bounding extents

•  backbuffer coding

x VCS

y

52

Review: Select/Hit Picking

•  assign (hierarchical) integer key/name(s)
•  small region around cursor as new viewport

•  redraw in selection mode
•  equivalent to casting pick “tube”
•  store keys, depth for drawn objects in hit list

•  examine hit list
•  usually use frontmost, but up to application

53

Review: Hit List
•  glSelectBuffer(buffersize, *buffer)

•  where to store hit list data
•  on hit, copy entire contents of name stack to output buffer.
•  hit record

•  number of names on stack
•  minimum and maximum depth of object vertices

•  depth lies in the z-buffer range [0,1]
•  multiplied by 2^32 -1 then rounded to nearest int

Post-Midterm Material

54

55

Review: Light Sources
•  directional/parallel lights

•  point at infinity: (x,y,z,0)T

•  point lights
•  finite position: (x,y,z,1)T

•  spotlights
•  position, direction, angle

•  ambient lights

56

Review: Light Source Placement

•  geometry: positions and directions
•  standard: world coordinate system

•  effect: lights fixed wrt world geometry
•  alternative: camera coordinate system

•  effect: lights attached to camera (car headlights)

57

Review: Reflectance

•  specular: perfect mirror with no scattering
•  gloss: mixed, partial specularity
•  diffuse: all directions with equal energy

 + + =

 specular + glossy + diffuse =
 reflectance distribution

58

Review: Reflection Equations

 Idiffuse = kd Ilight (n • l)

n l

θ

R = 2 (N (N · L)) – L

!

Ispecular = ksIlight (v•r)
nshiny

l

n v
h

!

Ispecular = ksIlight (h•n)
nshiny

h = (l + v) /2

59

Review: Reflection Equations

 full Phong lighting model
•  combine ambient, diffuse, specular components

•  Blinn-Phong lighting

•  don’t forget to normalize all lighting vectors!! n,l,r,v,h

!

Itotal = kaIambient + Ii (
i=1

lights

" kd (n• li) + ks(v•ri)
nshiny)

Itotal = kaIambient + Ii (
i=1

lights

! kd (n• li)+ks(h•ni)
nshiny)

60

Review: Lighting

•  lighting models
•  ambient

•  normals don’t matter
•  Lambert/diffuse

•  angle between surface normal and light
•  Phong/specular

•  surface normal, light, and viewpoint

61

Review: Shading Models
•  flat shading

•  for each polygon
•  compute Phong lighting just once

•  Gouraud shading
•  compute Phong lighting at the vertices
•  for each pixel in polygon, interpolate colors

•  Phong shading
•  for each pixel in polygon

•  interpolate normal
• perform Phong lighting

62

Review: Non-Photorealistic Shading
•  cool-to-warm shading:
•  draw silhouettes: if , e=edge-eye vector
•  draw creases: if

!

(e "n0)(e "n1) # 0

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html

!

(n0 "n1) # threshold

standard cool-to-warm with edges/creases
!

kw =
1+ n " l
2

,c = kwcw + (1# kw)cc

63

Review: Specifying Normals
•  OpenGL state machine

•  uses last normal specified
•  if no normals specified, assumes all identical

•  per-vertex normals
glNormal3f(1,1,1);
glVertex3f(3,4,5);
glNormal3f(1,1,0);
glVertex3f(10,5,2);

•  per-face normals
glNormal3f(1,1,1);
glVertex3f(3,4,5);
glVertex3f(10,5,2);

•  normal interpreted as direction from vertex location
•  can automatically normalize (computational cost)

glEnable(GL_NORMALIZE);

64

Review: Recursive Ray Tracing
•  ray tracing can handle

•  reflection (chrome/mirror)
•  refraction (glass)
•  shadows

•  one primary ray per pixel
•  spawn secondary rays

•  reflection, refraction
•  if another object is hit, recurse to

find its color
•  shadow

•  cast ray from intersection point to
light source, check if intersects
another object

•  termination criteria
•  no intersection (ray exits scene)
•  max bounces (recursion depth)
•  attenuated below threshold

Image Plane
Light
Source Eye

Refracted
Ray

Reflected
Ray Shadow

Rays

65

Review: Reflection and Refraction
•  reflection: mirror effects

•  perfect specular reflection

•  refraction: at boundary
•  Snell’s Law

•  light ray bends based on
refractive indices c1, c2

2211 sinsin !! cc =

n

! 1

! 2

d

t

n

! !

66

Review: Ray Tracing

•  issues:
•  generation of rays
•  intersection of rays with geometric primitives
•  geometric transformations
•  lighting and shading
•  efficient data structures so we don’t have to

test intersection with every object

67

Review: Radiosity

[IBM]

•  capture indirect diffuse-diffuse light exchange
•  model light transport as flow with conservation of energy until

convergence
•  view-independent, calculate for whole scene then browse from any

viewpoint
•  divide surfaces into small patches
•  loop: check for light exchange between all pairs

•  form factor: orientation of one patch wrt other patch (n x n matrix)

escience.anu.edu.au/lecture/cg/GlobalIllumination/Image/continuous.jpg escience.anu.edu.au/lecture/cg/GlobalIllumination/Image/discrete.jpg

68

Review: Subsurface Scattering
•  light enters and leaves at different

locations on the surface
•  bounces around inside

•  technical Academy Award, 2003
•  Jensen, Marschner, Hanrahan

69

Review: Non-Photorealistic Rendering
•  simulate look of hand-drawn sketches or

paintings, using digital models

www.red3d.com/cwr/npr/

70

Review: Collision Detection
•  boundary check

•  perimeter of world vs. viewpoint or objects
•  2D/3D absolute coordinates for bounds
•  simple point in space for viewpoint/objects

•  set of fixed barriers
•  walls in maze game

•  2D/3D absolute coordinate system
•  set of moveable objects

•  one object against set of items
•  missile vs. several tanks

•  multiple objects against each other
•  punching game: arms and legs of players
•  room of bouncing balls

71

Review: Collision Proxy Tradeoffs

 increasing complexity & tightness of fit

 decreasing cost of (overlap tests + proxy update)

AABB OBB Sphere Convex Hull 6-dop

•  collision proxy (bounding volume) is piece of geometry used
to represent complex object for purposes of finding collision

•  proxies exploit facts about human perception
•  we are bad at determining collision correctness
•  especially many things happening quickly

72

Review: Spatial Data Structures
uniform grids

bounding volume hierarchies

octrees

BSP trees

kd-trees

OBB trees

72

73

Review: Scan Conversion
•  convert continuous rendering primitives into discrete

fragments/pixels
•  given vertices in DCS, fill in the pixels

•  display coordinates required to provide scale for
discretization

74

Review: Midpoint Algorithm
•  we're moving horizontally along x direction (first octant)

•  only two choices: draw at current y value, or move up vertically
to y+1?

•  check if midpoint between two possible pixel centers above or
below line

•  candidates
•  top pixel: (x+1,y+1)
•  bottom pixel: (x+1, y)

•  midpoint: (x+1, y+.5)
•  check if midpoint above or below line

•  below: pick top pixel
•  above: pick bottom pixel

•  key idea behind Bresenham
•  reuse computation from previous step
•  integer arithmetic by doubling values

above: bottom pixel

below: top pixel

75

y=y0;

dx = x1-x0;

dy = y1-y0;

d = 2*dy-dx;

incKeepY = 2*dy;

incIncreaseY = 2*dy-2*dx;

for (x=x0; x <= x1; x++) {

draw(x,y);

if (d>0) then {

y = y + 1;

d += incIncreaseY;

} else {

d += incKeepY;

}

Review: Bresenham -
Reuse Computation, Integer Only

76

P

Review: Flood Fill

•  simple algorithm
•  draw edges of polygon
•  use flood-fill to draw interior

77

Review: Scanline Algorithms

•  scanline: a line of pixels in an image
•  set pixels inside polygon boundary along

horizontal lines one pixel apart vertically
• parity test: draw pixel if edgecount is odd
• optimization: only loop over axis-aligned

bounding box of xmin/xmax, ymin/ymax

1

2

3

4

5=0
P

78

Review: Bilinear Interpolation

•  interpolate quantity along L and R edges,
as a function of y

•  then interpolate quantity as a function of x

y

P(x,y)

P1

P2

P3

PL PR

79

1P

3P

2P
P

Review: Barycentric Coordinates
•  non-orthogonal coordinate system based on triangle

itself
•  origin: P1, basis vectors: (P2-P1) and (P3-P1)

γ=1

γ=0

β=1

β=0

α=1

α=0

P = P1 + β(P2-P1)+γ(P3-P1)
P = (1-β-γ)P1 + βP2+γP3

P = αP1 + βP2+γP3

α + β+ γ = 1
0 <= α, β, γ <= 1

(α,β,γ) =
(0,1,0)

(α,β,γ) =
(1,0,0)

(α,β,γ) =
(0,0,1)

80

Review: Computing Barycentric
Coordinates

•  2D triangle area
•  half of parallelogram area

•  from cross product

A = ΑP1 +ΑP2 +ΑP3

α = ΑP1 /A

β = ΑP2 /A

γ = ΑP3 /A

3P
A

1P

3P

2P

P

(α,β,γ) =
(1,0,0)

(α,β,γ) =
(0,1,0)

(α,β,γ) =
(0,0,1) 2P

A

1P
A

weighted combination of three points

81

Review: Painter’s Algorithm

•  draw objects from back to front
•  problems: no valid visibility order for

•  intersecting polygons
•  cycles of non-intersecting polygons possible

82

Review: BSP Trees

•  preprocess: create binary tree
•  recursive spatial partition
•  viewpoint independent

83

Review: BSP Trees
•  runtime: correctly traversing this tree enumerates

objects from back to front
•  viewpoint dependent: check which side of plane

viewpoint is on at each node
•  draw far, draw object in question,

draw near

1

2

3

4 5

6

7
8

9

F N

F N

F N

N F

N F

1 2

3 4

5

6

7 8

9

F N

F N

F N

84

Review: Z-Buffer Algorithm
•  augment color framebuffer with Z-buffer or

depth buffer which stores Z value at each
pixel
•  at frame beginning, initialize all pixel depths

to ∞
•  when rasterizing, interpolate depth (Z)

across polygon
•  check Z-buffer before storing pixel color in

framebuffer and storing depth in Z-buffer
•  don’t write pixel if its Z value is more distant

than the Z value already stored there

85

Review: Depth Test Precision

•  reminder: perspective transformation maps
eye-space (view) z to NDC z

•  thus

•  depth buffer essentially stores 1/z
•  high precision for near, low precision for distant

!

E 0 A 0
0 F B 0
0 0 C D
0 0 "1 0

$

%
%
%
%

&

'

(
(
(
(

x
y
z
1

$

%
%
%
%

&

'

(
(
(
(

=

Ex + Az
Fy + Bz
Cz + D
"z

$

%
%
%
%

&

'

(
(
(
(

=

"
Ex
z

+ Az
)

*
+

,

-
.

"
Fy
z

+ Bz
)

*
+

,

-
.

" C +
D
z

)

*
+

,

-
.

1

$

%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(

!

zNDC = " C +
D
zeye

$
% %

&

'
((

86

Review: Integer Depth Buffer
•  reminder from picking: depth stored as integer

•  depth lies in the DCS z range [0,1]
•  format: multiply by 2^n -1 then round to nearest int

•  where n = number of bits in depth buffer
•  24 bit depth buffer = 2^24 = 16,777,216 possible

values
•  small numbers near, large numbers far

•  consider depth from VCS: (1<<N) * (a + b / z)
•  N = number of bits of Z precision
•  a = zFar / (zFar - zNear)
•  b = zFar * zNear / (zNear - zFar)
•  z = distance from the eye to the object

87

Review: Object Space Algorithms
•  determine visibility on object or polygon level

•  using camera coordinates
•  resolution independent

•  explicitly compute visible portions of polygons
•  early in pipeline

•  after clipping
•  requires depth-sorting

•  painter’s algorithm
•  BSP trees

88

Review: Image Space Algorithms
•  perform visibility test for in screen coordinates

•  limited to resolution of display
•  Z-buffer: check every pixel independently

•  performed late in rendering pipeline

89

Review: Back-face Culling

y

z eye

VCS

NDCS

eye works to cull if 0>ZN
y

z

90

Review: Invisible Primitives
•  why might a polygon be invisible?

•  polygon outside the field of view / frustum
•  solved by clipping

•  polygon is backfacing
•  solved by backface culling

•  polygon is occluded by object(s) nearer the viewpoint
•  solved by hidden surface removal

Review: Alpha and Premultiplication
•  specify opacity with alpha channel α

•  α=1: opaque, α=.5: translucent, α=0: transparent
•  how to express a pixel is half covered by a red object?

•  obvious way: store color independent from transparency (r,g,b,α)
•  intuition: alpha as transparent colored glass

•  100% transparency can be represented with many different RGB values

•  pixel value is (1,0,0,.5)
•  upside: easy to change opacity of image, very intuitive
•  downside: compositing calculations are more difficult - not associative

•  elegant way: premultiply by α so store (αr, αg, αb,α)
•  intuition: alpha as screen/mesh

•  RGB specifies how much color object contributes to scene
•  alpha specifies how much object obscures whatever is behind it (coverage)
•  alpha of .5 means half the pixel is covered by the color, half completely transparent
•  only one 4-tuple represents 100% transparency: (0,0,0,0)

•  pixel value is (.5, 0, 0, .5)
•  upside: compositing calculations easy (& additive blending for glowing!)
•  downside: less intuitive 91

92

Review: Complex Compositing
•  foreground color A, background color B
•  how might you combine multiple elements?

•  Compositing Digital Images, Porter and Duff, Siggraph '84
•  pre-multiplied alpha allows all cases to be handled simply

93

Review: Texture Coordinates
•  texture image: 2D array of color values (texels)
•  assigning texture coordinates (s,t) at vertex with

object coordinates (x,y,z,w)
•  use interpolated (s,t) for texel lookup at each pixel
•  use value to modify a polygon’s color

•  or other surface property
•  specified by programmer or artist

glTexCoord2f(s,t)
glVertexf(x,y,z,w)

94

glTexCoord2d(1, 1);
glVertex3d (x, y, z);

(1,0)

(0,0) (0,1)

(1,1)

Review: Tiled Texture Map

glTexCoord2d(4, 4);
glVertex3d (x, y, z);

(4,4)

(0,4)

(4,0)

(0,0)

95

Review: Fractional Texture Coordinates

(0,0) (1,0)

(0,1) (1,1)

(0,0) (.25,0)

(0,.5) (.25,.5)

texture
image

96

Review: Texture
•  action when s or t is outside [0…1] interval

•  tiling
•  clamping

•  functions
•  replace/decal
•  modulate
•  blend

•  texture matrix stack
glMatrixMode(GL_TEXTURE);

97

Review: MIPmapping
•  image pyramid, precompute averaged versions

Without MIP-mapping

With MIP-mapping

98

Review: Bump Mapping: Normals As Texture

•  create illusion of complex
geometry model

•  control shape effect by
locally perturbing surface
normal

99

Review: Environment Mapping
•  cheap way to achieve reflective effect

•  generate image of surrounding
•  map to object as texture

•  sphere mapping: texture is distorted fisheye view
•  point camera at mirrored sphere
•  use spherical texture coordinates

100

Review: Perlin Noise: Procedural Textures

function marble(point)

 x = point.x + turbulence(point);

 return marble_color(sin(x))

101

Review: Perlin Noise

•  coherency: smooth not abrupt changes
•  turbulence: multiple feature sizes

102

Review: Procedural Modeling

•  textures, geometry
•  nonprocedural: explicitly stored in memory

•  procedural approach
•  compute something on the fly

• not load from disk
•  often less memory cost
•  visual richness

• adaptable precision
•  noise, fractals, particle systems

103

Review: Language-Based Generation

•  L-Systems
•  F: forward, R: right, L: left
•  Koch snowflake:

F = FLFRRFLF
•  Mariano’s Bush:

 F=FF-[-F+F+F]+[+F-F-F]
• angle 16

http://spanky.triumf.ca/www/fractint/lsys/plants.html

104

Review: Fractal Terrain

•  1D: midpoint displacement
•  divide in half, randomly displace
•  scale variance by half

•  2D: diamond-square
•  generate new value at midpoint
•  average corner values + random displacement

•  scale variance by half each time

http://www.gameprogrammer.com/fractal.html

105

Review: Particle Systems

•  changeable/fluid stuff
•  fire, steam, smoke, water, grass, hair, dust,

waterfalls, fireworks, explosions, flocks
•  life cycle

•  generation, dynamics, death
•  rendering tricks

•  avoid hidden surface computations

106

Review: Clipping

•  analytically calculating the portions of
primitives within the viewport

107

Review: Clipping Lines To Viewport
•  combining trivial accepts/rejects

•  trivially accept lines with both endpoints inside all edges
of the viewport

•  trivially reject lines with both endpoints outside the same
edge of the viewport

•  otherwise, reduce to trivial cases by splitting into two
segments

108

Review: Cohen-Sutherland Line Clipping

•  outcodes
•  4 flags encoding position of a point relative to

top, bottom, left, and right boundary

x=xmin x=xmax

y=ymin

y=ymax

0000

1010 1000 1001

0010 0001

0110 0100 0101

p1

p2

p3
• OC(p1)== 0 &&

OC(p2)==0
•  trivial accept

•  (OC(p1) &
OC(p2))!= 0
•  trivial reject

109

Review: Polygon Clipping

•  not just clipping all boundary lines
•  may have to introduce new line segments

110

Review: Sutherland-Hodgeman Clipping
•  for each viewport edge

•  clip the polygon against the edge equation for new vertex list
•  after doing all edges, the polygon is fully clipped

•  for each polygon vertex
•  decide what to do based on 4 possibilities

•  is vertex inside or outside?
•  is previous vertex inside or outside?

111

Review: Sutherland-Hodgeman Clipping

•  edge from p[i-1] to p[i] has four cases
•  decide what to add to output vertex list

inside outside

p[i]

p[i] output

inside outside

no output

inside outside

i output

inside outside

i output
p[i] output

p[i]

p[i] p[i] p[i-1]

p[i-1] p[i-1]

p[i-1]

112

Review: RGB Component Color
•  simple model of color using RGB triples
•  component-wise multiplication

•  (a0,a1,a2) * (b0,b1,b2) = (a0*b0, a1*b1, a2*b2)

•  why does this work?
•  must dive into light, human vision, color spaces

113

Review: Trichromacy and Metamers

•  three types of cones
•  color is combination

of cone stimuli
•  metamer: identically

perceived color
caused by very
different spectra

114

Review: Measured vs. CIE Color Spaces

•  measured basis
•  monochromatic lights
•  physical observations
•  negative lobes

•  transformed basis
•  “imaginary” lights
•  all positive, unit area
•  Y is luminance

115

Review: Chromaticity Diagram and Gamuts
•  plane of equal brightness showing chromaticity
•  gamut is polygon, device primaries at corners

•  defines reproducible color range

116

Review: RGB Color Space (Color Cube)
•  define colors with (r, g, b)

amounts of red, green, and blue
•  used by OpenGL
•  hardware-centric

•  RGB color cube sits within CIE
color space
•  subset of perceivable colors
•  scale, rotate, shear cube

117

Review: HSV Color Space

•  hue: dominant wavelength, “color”
•  saturation: how far from grey
•  value/brightness: how far from black/

white
•  cannot convert to RGB with matrix

alone

118

!

S =1" min(R,G,B)
I

Review: HSI/HSV and RGB
•  HSV/HSI conversion from RGB

•  hue same in both
•  value is max, intensity is average

3
BGRI ++

=

[]

!
!
!

"

#

$
$
$

%

&

''+'

'+'
= '

))(()(

)()(
2
1

cos
2

1

BGBRGR

BRGR
H

!

V =max(R,G,B)

!

S =1" min(R,G,B)
V

• HSI:

• HSV:

!

if (B > G),
H = 360 "H

119

Review: YIQ Color Space

•  color model used for color TV
•  Y is luminance (same as CIE)
•  I & Q are color (not same I as HSI!)
•  using Y backwards compatible for B/W TVs
•  conversion from RGB is linear

• green is much lighter than red, and red lighter
than blue

!
!
!

"

#

$
$
$

%

&

!
!
!

"

#

$
$
$

%

&

'

''=

!
!
!

"

#

$
$
$

%

&

B
G
R

Q
I
Y

31.052.021.0
32.028.060.0
11.059.030.0

Q

I

120

Review: Color Constancy

•  automatic “white balance” from change in
illumination

•  vast amount of processing behind the scenes!
•  colorimetry vs. perception

121

Review: Splines

•  spline is parametric
curve defined by control
points
•  knots: control points

that lie on curve
•  engineering drawing:

spline was flexible
wood, control points
were physical weights

A Duck (weight)

Ducks trace out curve

122

Review: Hermite Spline

•  user provides
•  endpoints
•  derivatives at endpoints

123

Review: Bézier Curves

•  four control points, two of which are knots
•  more intuitive definition than derivatives

•  curve will always remain within convex hull
(bounding region) defined by control points

124

Review: Basis Functions
•  point on curve obtained by multiplying each control

point by some basis function and summing

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x1
x0
x'1
x'0

125

Review: Comparing Hermite and Bézier

0

0.2

0.4

0.6

0.8

1

1.2

B0
B1
B2
B3

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x1
x0
x'1
x'0

Bézier Hermite

126

Review: Sub-Dividing Bézier Curves
•  find the midpoint of the line joining M012, M123.

call it M0123

P0

P1 P2

P3

M01

M12

M23

M012 M123
M0123

127

Review: de Casteljau’s Algorithm

•  can find the point on Bézier curve for any parameter
value t with similar algorithm
•  for t=0.25, instead of taking midpoints take points 0.25 of the

way

P0

P1
P2

P3

M01

M12

M23

t=0.25

demo: www.saltire.com/applets/advanced_geometry/spline/spline.htm

128

Review: Continuity

•  continuity definitions
•  C0: share join point
•  C1: share continuous derivatives
•  C2: share continuous second derivatives

•  piecewise Bézier: no continuity guarantees

129

Review: B-Spline

•  C0, C1, and C2 continuous
•  piecewise: locality of control point influence

130 Semiology of Graphics. Jacques Bertin, Gauthier-Villars 1967, EHESS 1998

position

size

grey level

texture

color

shape

orientation

points lines areas
marks: geometric primitives

attributes

Review: Visual Encoding

•  attributes
•  parameters

control mark
appearance

•  separable
channels
flowing from
retina to brain

131

Review: Channel Ranking By Data Type

[Mackinlay, Automating the Design of Graphical
Presentations of Relational Information, ACM
TOG 5:2, 1986]

132

Review: Integral vs. Separable Channels

•  not all channels separable

[Colin Ware, Information Visualization:
Perception for Design. Morgan Kaufmann
1999.]

color
location

color
motion

color
shape

size
orientation

x-size
y-size

red-green
yellow-blue

133

Review: Preattentive Visual Channels
•  color alone, shape alone: preattentive

•  combined color and shape: requires attention
•  search speed linear with distractor count

[Christopher Healey, [www.csc.ncsu.edu/faculty/healey/PP/PP.html]

Review: InfoVis Techniques

•  3D often worse then 2D for abstract data
•  perspective distortion, occlusion
•  transform, use linked views

•  animation often worse than small multiples

•  aggregation and filtering
•  focus+context

•  dimensionality reduction
•  parallel coordinates 134

135

Beyond 314: Other Graphics Courses
•  424: Geometric Modelling

•  was offered this year
•  426: Computer Animation

•  will be offered next year

•  514: Image-Based Rendering - Heidrich
•  526: Algorithmic Animation - van de Panne
•  530P: Sensorimotor Computation - Pai
•  533A: Digital Geometry – Sheffer
•  547: Information Visualization - Munzner

