University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2013

Tamara Munzner

Final Review

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013

Final

¢ exam notes

« exam will be timed for 2.5 hours, but reserve
entire 3-hour block of time just in case

* closed book, closed notes

 except for 2-sided 8.5"x11” sheet of
handwritten notes

* ok to staple midterm sheet + new one back to
back

« calculator: a good idea, but not required
« graphical OK, smartphones etc not ok
* IDs out and face up

Final Emphasis

covers entire course

includes material from * lighting/shading

before midterm - advanced rendering

* transformations, « collision
viewing/picking

but heavier weighting

for material after last

midterm

* post-midterm topics:

* rasterization

* hidden surfaces /
blending

* textures/procedural
* clipping

* color

* curves

* visualization

Sample Final

* solutions now posted
+ Spring 06-07 (label was off by one)
* note some material not covered this time
* projection types like cavalier/cabinet
* Q1b, Q1c,
* antialiasing
+ Q1d, Q11, Q12
* animation
* image-based rendering
* Q1g
+ scientific visualization
+ Q14

Studying Advice Reading from OpenGL Red Book

. Introduction to OpenGL
: State Management and Drawing Geometric Objects
: Viewing
: Display Lists
: Color
: Lighting
: Texture Mapping
* 12: Selection and Feedback
* 13: Now That You Know
+ only section Object Selection Using the Back Buffer
* Appendix: Basics of GLUT (Aux inv 1.1)
* Appendix: Homogeneous Coordinates and Transformation

» do problems! :
» work through old homeworks, exams

L]
O o 00 WN =

> Matrices 6
Reading from Shirley: Foundations of CG

1: Intro * * 11: Texture Mapping *
2: Misc Math * * 13: More Ray Tracing *
3: Raster Algs * * only 13.1

+ through 3.3 » 12: Data Structures *
4: Ray Tracing * - only 12.2-12.4
5: Linear Algebra * + 15: Curves and Surfaces * . T

+ except for 5.4 « 17: Computer Animation * Review — Fast!!
6: Transforms * < only17.6-17.7

* except6.1.6 « 21:Color*
7: Viewing * » 22: Visual Perception *
8: Graphics Pipeline * * only 22.2.2 and 22.2.4

- 8.1 through 8.1.6, 8.2.3-8.2.5, - 27: Visualization *

8.2.7,8.4

10: Surface Shading *

Review: Rendering Capabilities

Review: Rendering Pipeline

Geometry MMMNMM*LiMn H%mmmwﬁcr_ L
Database / |Transform. ghting P+ hsform. ipping
\. Scan . Depth) Frame-
Conversion|] 1oxturing pae Blending buffer

10

Review: OpenGL
 pipeline processing, set state as needed

void display()

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glClear (GL_COLOR BUFFER BIT);
glColor3£(0.0, 1.0, 0.0);
glBegin (GL_POLYGON) ;

glvertex3£f (0.25, .25, -0.5);

0
glVertex3£(0.75, 0.25, -0.5);
glVertex3£(0.75, 0.75, -0.5);
glVertex3£(0.25, 0.75, -0.5);
glEnd() ;
glFlush() ;

11

Review: Event-Driven Programming

* main loop not under your control
* vS. procedural
« control flow through event callbacks
* redraw the window now
* key was pressed
* mouse moved

« callback functions called from main loop
when events occur

* mouse/keyboard state setting vs. redrawing

12

Review: 2D Rotation

x" =x cos(0) - y sin(0)
(X’, y’) y' =x sin(0) + y cos(0)
[x' _ cos(@) —sin(B)] x]
] |

sin(B) cos(H) y

X,)

= counterclockwise, RHS

13

Review: 2D Rotation From Trig Identities

X =1 c0s ()
y =1sin (¢)

x'=rcos (¢ +
y'=rsin (¢ + 0)
Trig Identity...

g (Xl, y,)
(X y) x" =1 cos(d) cos(0) —r sin(¢) sin(0)
? y' =1 sin(¢) cos(0) + r cos() sin(0)
0 bstitute...
¢ x '=x cos(0) - y sin(0)

y'=xsin(0) +y cos(0)

14

Review: 2D Rotation: Another Derivation

x'=xcosf — ysinf

y'=xsin6 + ycos6

x'=A-B
A =xcosf

15

Review: Shear, Reflection

* shear along x axis
* push points to right in proportion to height

y y
)i ? - ‘—/° xV [1 sh][x]. [0
x e R
 reflect across x axis
* mirror
= =IO M
== S M

Review: 2D Transformations

matrix multiplication

x' a 0][x

»| [0 |y
_'_l

scaling matrix

matrix multiplication

m _ cos(®) —sin(@)] H

sin(@) cos(@) y
\ ~ 7

rotation matrix

vector addition

y) X a X+a X'
T
- a bl[x] [x
c dily) y'}
translation multiplication matrix?? 7

Review: Linear Transformations

 linear transformations are combinations of

* shear ,

- scale X'l _[a b][x X'=ax+by
* rotate y' e 4 y y'=cx+dy
* reflect

 properties of linear transformations
« satisifes T(sx+ty) = s T(x) + t T(y)
* origin maps to origin
* lines map to lines
* parallel lines remain parallel
* ratios are preserved

* closed under composition
18

Review: Affine Transformations

« affine transforms are combinations of
* linear transformations ,

_ X a b cl[x
 translations ‘

Vi=|d e fl||ly

w 0 0 1(lw

+ properties of affine transformations
* origin does not necessarily map to origin
¢ lines map to lines
« parallel lines remain parallel
* ratios are preserved
* closed under composition

19

Review: Homogeneous Coordinates

homogeneous cartesian
Iw Xy
(-Xa ,)/9 W) (*9 T
w w w
yow - homogenize to convert homog. 3D
W point to cartesian 2D point:
/\1 « divide by w to get (x/w, y/w, 1)

e projects line to point onto w=1 plane
* like normalizing, one dimension up
- when w=0, consider it as direction
* points at infinity
 these points cannot be homogenized
Y * lies on x-y plane
(0,0,0) is undefined

20

Review: 3D Homog Transformations

* use 4x4 matrices for 3D transformations

translate(a,b,c) scale(a,b,c)
x' 1 allx] x' a X
y' 1 bily 2 I y
z' 1 cllz z' c z
1 111 1 1][1
Rotate(x,0) Rotate(y,0) Rotate(z,0)
x' 1 17x] cosO sin@ cosf@ —sinf
V' cosf —sinf y 1 sinf cos@
2 sin@ cosf z —sinf cos6 1
1 1_ 1_ 1 1
21

Review: 3D Shear

1 hyx hzx
general shear shear(hxy, hxz, hyx, hyz, hzx, hzy) =
hxz hyz 1

0
hxy 1 hzy 0O
0
0 0 0 1

"x-shear" usually means shear along x in direction of some other axis
« correction: not shear along some axis in direction of x
+ to avoid ambiguity, always say "shear along <axis> in direction of <axis>"

1 h 0O 10 A O
shearAlongXinDirectionOfY(h) = o 1o shearAlongXinDirectionOfZ(h) = 0 1roo
00 10 0010
00 0 1 0001
1000 1 00 0
shearAlongYinDirectionOfX (h) = ho1°0°0 shearAlongYinDirectionOfZ(h) = 01 k0
0010 0010
0001 00 0 1
1000 1000
0100 Lo 0100
shearAlongZinDirectionOfX (h) = h o 10 shearAlongZinDirectionOfY (h) = 0o 1o
0001 00 01

22

Review: Composing Transformations

ORDER MATTERS!
L) A LD R(45)
R

<

R{45)T(1,1) T(1,1) R{45)

TaTb =Tb Ta, but RaRb !=Rb Raand Ta Rb !=Rb Ta

» translations commute

» rotations around same axis commute

» rotations around different axes do not commute

» rotations and translations do not commute 23

Review: Composing Transformations
p'=TRp

+ which direction to read?
* right to left
* interpret operations wrt fixed coordinates
* moving object
* left to right
* interpret operations wrt local coordinates
» changing coordinate system

* OpenGL updates current matrix with postmultiply
 glTranslatef(2,3,0);
 glRotatef(-90,0,0,1);
+ glVertexf(1,1,1);

+ specify vector last, in final coordinate system

« first matrix to affect it is specified second-to-last

OpenGL pipeline ordering!

24

Review: Interpreting Transformations Review: General Transform Composition

right to left: moving object

p'=TRp - transformation of geometry into coordinate

“7, system where operation becomes simpler
| intultive’” * typically translate to origin
translate by (-1,0) yp y 9
2.1) . . :
o left to right: changing coordinate system . perform operation
| (1.1)
) OpenGL o
| - transform geometry back to original

coordinate system

« same relative position between object and
basis vectors

25 26

Review: Arbitrary Rotation Review: Transformation Hierarchies

(bX’ by’ °z R (ay, ay, a5, 1)
Y o ® Xy -z + transforms apply to graph nodes beneath them
> « design structure so that object doesn’ t fall apart
X * instancing
z ¢ (Cx, Oy: Sz, 1) -
« arbitrary rotation: change of basis \R
* given two orthonormal coordinate systems XYZ and ABC :
* A’s location in the XYZ coordinate system is (ay, ay, az, 1), ... op&\

 transformation from one to the other is matrix R whose o~ ? '\Q

columns are 4,B,C: T
[&6 ¢ O 1
x x x @ (@
| b ¢ 0 T Hea anNeckLeg yhd\Foot
S

a 0
R =| Y y Y
) la. & 0

|

]

T T

arm

S S (§ &

Head Neck leg Foot 28

Review: Matrix Stacks

* OpenGL matrix calls postmultiply matrix M onto current
matrix P, overwrite it to be PM

* or can save intermediate states with stack

* no need to compute inverse matrices all the time

* modularize changes to pipeline state

+ avoids accumulation of numerical errors

D = C scale(2,2,2) trans(1,0,0)

Review: Display Lists

+ precompile/cache block of OpenGL code for reuse
« usually more efficient than immediate mode
 exact optimizations depend on driver
+ good for multiple instances of same object
* but cannot change contents, not parametrizable
 good for static objects redrawn often

c b « display lists persist across multiple frames
DrawSquare() * interactive graphics: objects redrawn every frame from
c c C c glPushMatrix() new viewpoint from moving camera
5 B B B glScale3f(2,2,2) » can be nested hierarchically
glTranslate3f(1,0,0) e snowman examp|e
Al A A A DrawSquare() - 3x performance improvement, 36K polys
IPopMatri . : - - :
glPopMatrix() 2 http://www.lighthouse3d.com/opengl/displaylists %
Review: Normals Review: Transforming Normals
* polygon:

N P,
& N =(P,~P)x(P,~P)
R

P,
» assume vertices ordered CCW when viewed
from visible side of polygon
* normal for a vertex
« specify polygon orientation
« used for lighting

* supplied by model (i.e., sphere),

or computed from neighboring polygons N

* nonuniform scaling would cause to be not
perpendicular to desired plane!

« cannot transform normals using same
matrix as points

P P'=MP
N — N'=ON
given M,
what should Q be?

Q = Q\/[_l y inverse transpose of the modelling transformation

32

Review: Camera Motion Review: Constructing Lookat

* rotate/translate/scale difficult to control « translate from origin to eye
« arbitrary viewing position - rotate view vector (lookat — eye) to w axis
* eye point, gaze/lookat direction, up vector * rotate around w to bring up into vw-plane
y lookat e y lookat e

Pref Pref
view WCS
Z
Peye
33
Review: V2W vs. W2V Review: Graphics Cameras
|[1 0 0 g"]l I[”X v, ow, o]l
_ I T - real pinhole camera: image inverted
* M, =TR =10 0 1 el Juovow 0 P e
[o 00 1J [0 0 0 1J eye
. iy . . . point
 we derived position of camera as object in world olans
« invert for gluLookAt: go from world to camera!
lfux u, u. 0] Ih 00 ‘ex} = computer graphics camera: convenient equivalent
e« M =(M)—1 R-1T-1 Loiveov, v, 0 010 -
w2v vaw/ = R' - y I - v
[w, w, w. 0| o 0o 1 —ez|
eye
lo o o 1 [o 00 1J p°i£</
U, u,ou. -ecu e My M mERUATEEU o R, center of .
R T L B B e e O e A projection I:::r?:
W2v oy W, ow, -e°w W W, W, —e EW t-e EW +—e FW,
0 0 0 1 0 0 0 1 3

Review: Basic Perspective Projection

similar triangles y_y_, y.=J"d
y Pxyz) d :z z
/'@] x'=L z'=d
z
| z
z'=d
Z;Cd homogeneous X 1 0 0 0
’ coords y 0 1 0 0
z/d - 0 0 I O
) "y 00 1/d 0

37

Review: From VCS to NDCS

perspective view volume orthographic view volume

VCS y=bottom z=-near z=-far
X
x=right y=bottom

Z=-near

 orthographic camera
+ center of projection at
infinity
* no perspective
convergence 38

Review: Orthographic Derivation

- scale, translate, reflect for new coord sys

NDCS

y=bottom

Z=-near

39

Review: Orthographic Derivation

* scale, translate, reflect for new coord sys

2 0 0 _ right +left |
right - left right - left
0 2 0 _ top +bot
P top — bot top-bot | p
0 0 -2 ~ far + near
far — near far — near
0 0 0 1

40

Review: Asymmetric Frusta

* our formulation allows asymmetry
« why bother? binocular stereo
* view vector not perpendicular to view plane

e

Left Eye

Review: Field-of-View Formulation

« FOV in one direction + aspect ratio (w/h)
 determines FOV in other direction
« also set near, far (reasonably intuitive)

X

71 Frustum [—

Z=-n z=-f

42

Review: Projection Normalization

« warp perspective view volume to orthogonal
view volume

* render all scenes with orthographic projection!
- aka perspective warp

z=0 z=d

-

43

Review: Separate Warp From Homogenization

viewing clipping normglized
VCS v2C CCS C2N device
ot . NDCS
.| projection | .| perspective |,

transformation division
alter w Iw

« warp requires only standard matrix multiply

« distort such that orthographic projection of
distorted objects is desired persp projection

* w is changed
« clip after warp, before divide
« division by w: homogenization

44

Review: Perspective Derivation

* shear
* scale

* projection-normalization

y=bottom Z=-near

x=right

[2n ol]
r—1 r-1
0o o ttb
t-b t-b
0 0 -(f+n) =-2fn
f-n -n
| 0 0 -1 0 |
NDCS
(1,1,1)
z
('13'1!'1) \x

z=-far
45

Review: N2D Transformation

0

0

0

0

depth 0

2
0

1

oS O o o~

width(x, +1)-1

0 0 0][xy 2
-1 0 ofy, height(-y, +1)-1
E 2
N depth(z, +1)
0

1|1)
1

10 0 Wld[h_l width
*» heht 1| 2
vol o 1 o 2e8_L11 o
| Gepth
D
il loo %” 0
000 1 0
reminder:

NDC z range is -1 to 1

Display z range is 0 to 1.
glDepthRange(n,f) can constrain
further, but depth =1 is both
max and default

Aky

NDC

0

300

U x

o200

Y

width

height
viewport

46

Review: Projective Rendering Pipeline

following pipeline from top/left to

glVertex3f(x,y,z) | bottom/right: moving object POV
object world viewing alter w
OCS 02W wcs wav VCS V2C glFrustum(...)
modeling viewing projection
—| transformation transformation transformation .
clipping
glTranslatef(x,y,z) gluLookAt(...)
glRotatef(a,x,y,z) C2N |w CCS
perspective
. . division normalized
OCS - object coordinate SyStemgluglnitWindowSize(w,h) N2p device
WCS - world coordinate system@'Viewport(x,y,a,b) NDCS
VCS - viewing coordinate system }’,'Z,‘:L'?g?maﬁon
CCS - clipping coordinate system l device
DCS

NDCS - normalized device coordinate system

47

DCS - device coordinate system

Review: OpenGL Example

‘go back from end of pipeline to beginning: coord frame POV!

object world viewing clippin

ocs O2W weg W2V ygs © v2C RRINg
modeling viewing projection)

—| transformation || transformation transformation

CCS glMatrixMode (GL_PROJECTION) ;

glLoadIdentity () ;

gluPerspective(45,
glMatrixMode (GL_MODELVIEW) ;

VCS

glLoadIdentity() ;

1.0,

0.1, 200.0);

glTranslatef(0.0, 0.0, -5.0);

WCS

glPushMatrix ()

glTranslate(4, 4, 0); W20

0OCSs1 glutSolidTeapot (1) ;

glPopMatrix() ;

glTranslate(2, 2, 0);
OCS2 glutsolidTeapot(l);

w20

* transformations that
are applied to object
first are specified

last
48

Review: Coord Sys: Frame vs Point

read down: transforming read up: transforming points,
between coordinate frames, up from frame B coords to
from frame A to frame B frame A coords

OpenGL command order

DCS ispl
D2N v iSplay N2D

NDCS normalized devide
N2V glFrustum(...) V2N

VCS viewing
V2W gluLookAt(...) W2V
WCS world
W2 O glRotatef(a,x,y,z) 02W

oCs obg'ect
glVertex3f(x,y,z)

|pipe|ine interpretatich |

Review: Coord Sys: Frame vs Point

* is gluLookat viewing transformation V2W or W2V?
depends on which way you read!

* coordinate frames: V2W
* takes you from view to world coordinate frame
* points/objects: W2V

* point is transformed from world to view coords when
multiply by gluLookAt matrix

« H2 uses the object/pipeline POV
* Q1/4 is W2V (gluLookAt)
* Q2/5-6 is V2N (glFrustum)
- Q3/7 is N2D (glViewport)

50

Review: Picking Methods

* manual ray intersection /9“;‘

* bounding extents

* backbuffer coding

AN

Review: Select/Hit Picking

assign (hierarchical) integer key/name(s)
small region around cursor as new viewport

S

redraw in selection mode

* equivalent to casting pick “tube”

- store keys, depth for drawn objects in hit list
examine hit list

- usually use frontmost, but up to application ,

Review: Hit List Post-Midterm Material

+ glSelectBuffer(buffersize, *buffer)

* where to store hit list data
+ on hit, copy entire contents of name stack to output buffer.
* hit record

* number of names on stack

* minimum and maximum depth of object vertices
+ depth lies in the z-buffer range [0,1]
* multiplied by 2*32 -1 then rounded to nearest int

53 54

Review: Light Sources Review: Light Source Placement

» directional/parallel lights
* point at infinity: (x,y,z,0)T

» geometry: positions and directions
+ standard: world coordinate system

o - effect: lights fixed wrt world geometry
’ pow;t !:ghts tion: T ﬁ?ik * alternative: camera coordinate system
inite position: (x.y,z,1) - effect: lights attached to camera (car headlights)

* spotlights
* position, direction, angle

« ambient lights

55 56

Review: Reflectance

 specular. perfect mirror with no scattering
 gloss: mixed, partial specularity
« diffuse: all directions with equal energy

ARV VAl v ¢
specular + glossy + diffuse = |
reflectance distribution

57

Review: Reflection Equations

l n
Ljittuse = Kd Liighe (M * D) ‘ i i‘

nshin ’N\
Ispecular = ksIlight (V * I') Y . ﬁ &X
_ _ / (A
R=2(N(N-L)-L ‘ fel‘ \¢ |
Ispecular = ksIlight (h ° n) shinty

h=(+v)/2 ¥ nmp o,
I\W 58

Review: Reflection Equations

full Phong lighting model
« combine ambient, diffuse, specular components
#lights

Itotal = kaIambient + 211 (kd (n ¢ ll) + ks(v ¢ ri)nShiny)

i=1
 Blinn-Phong lighting

#lights n..
+ ¥ Lk,mel)+k (hen) ™)

i=1

I kI

total — ™aXambient

+ don’t forget to normalize all lighting vectors!! n,l,r,v,h

59

Review: Lighting

* lighting models
* ambient
* normals don’t matter
* Lambert/diffuse
* angle between surface normal and light
* Phong/specular
« surface normal, light, and viewpoint

60

Review: Shading Models

flat shading
« for each polygon
« compute Phong lighting just once
» Gouraud shading
« compute Phong lighting at the vertices
« for each pixel in polygon, interpolate colors
* Phong shading
« for each pixel in polygon
* interpolate normal
- perform Phong lighting

Review: Non-Photorealistic Shading

. 1+n-1
- cool-to-warm shading: , = ——

* draw silhouettes: if (e-n,)(e-n,) <0, e=edge-eye vector
* draw creases: if (n,-n,) < threshold

c=kc, +(1-k,)c.

standard cool-to-warm with edges/creases

1100
S

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html

Review: Specifying Normals

OpenGL state machine
+ uses last normal specified
« if no normals specified, assumes all identical

per-vertex normals
glNormal3f(1,1,1);
glVertex31(3,4,5);
gINormal31(1,1,0);
glVertex31(10,5,2);
per-face normals
glNormal3f(1,1,1);
glVertex31(3,4,5);
glVertex31(10,5,2);
* normal interpreted as direction from vertex location

 can automatically normalize (computational cost)
glEnable(GL_NORMALIZE); 63

Review: Recursive Ray Tracing

 ray tracing can handle
* reflection (chrome/mirror)
« refraction (glass)
* shadows Eye [_Image Plane
* oOne primary ray per pixel @7
* spawn secondary rays G
« reflection, refraction
« if another object is hit, recurse to Shadow
find its color Rays

» shadow

« cast ray from intersection point to
light source, check if intersects

anloth('er obje.ct . Refracted
¢ termination criteria Ray
* no intersection (ray exits scene)
* max bounces (recursion depth)
* attenuated below threshold

Review: Reflection and Refraction Review: Ray Tracing

* reflection: mirror effects n * jssues:

« perfect specular reflection 0|6 - generation of rays

intersection of rays with geometric primitives
geometric transformations
lighting and shading

* refraction: at boundary

« Snell’s Law d n o
- light ray bends based on - efficient data structures so we don’t have to
refractive indices c,, ¢, 9, test intersection with every object
¢, sinf, =c,sin0, 6,
t
65 66

Review: Radiosity

capture indirect diffuse-diffuse light exchange
model light transport as flow with conservation of energy until - light enters and leaves at different

convergence locations on the surface

Review: Subsurface Scattering

+ view-independent, calculate for whole scene then browse from any .
vi . * bounces around inside
ewpoint
divide surfaces into small patches * technical Academy Award, 2003
loop: check for light exchange between all pairs * Jensen, Marschner, Hanrahan

« form factor: orientation of one patch wrt other patch (n x n matrix)

escience.anu.edu.au/lecture/cg/Globallllumination/Image/discrete.jpg escience.anu.edu.au/lecture/cg/Globallllumination/Image/continuous.jpg

Review: Non-Photorealistic Rendering Review: Collision Detection

» simulate look of hand-drawn sketches or - boundary check

« perimeter of world vs. viewpoint or objects
+ 2D/3D absolute coordinates for bounds
* simple point in space for viewpoint/objects
« set of fixed barriers
* walls in maze game
« 2D/3D absolute coordinate system
 set of moveable objects
* one object against set of items
* missile vs. several tanks
* multiple objects against each other
* punching game: arms and legs of players
* room of bouncing balls
www.red3d.com/cwr/npr/

Review: Collision Proxy Tradeoffs Review: Spatial Data Structures

+ collision proxy (bounding volume) is piece of geometry used uniform grids BSP trees

to represent complex object for purposes of finding collision
« proxies exploit facts about human perception
* we are bad at determining collision correctness

+ especially many things happening quickly bounding volume hierarchies kd-trees

/ ‘ I
= OBB trees

Sphere AABB OBB 6-dop Convex Hull A

o

increasing complexity & tightness of fit

71

decreasing cost of (overlap tests + proxy update)

Review: Scan Conversion Review: Midpoint Algorithm

. . deri s . di * we're moving horizontally along x direction (first octant)
convert Cont_muous rendering primitives into discrete only two choices: draw at current y value, or move up vertically
fragments/pixels to y+1?

o given vertices in DCS. fill in the pixels » check if midpoint between two possible pixel centers above or
’ below line

« display coordinates required to provide scale for - candidates
discretization * top pixel: (x+1,y+1)
* bottom pixel: (x+1, y)
* midpoint: (x+1, y+.5) 7‘
 check if midpoint above or below line
* below: pick top pixel
7 / above: pick bottom pixel
/ + key idea behind Bresenham
v / * reuse computation from previous step
* integer arithmetic by doubling values
73 74

below: top pixel

above: bottom pixel

Review: Bresenham -

Reuse Computation, Integer Only Review: Flood Fill

» simple algorithm

y=yO0;
dx = x1-x0; draw edges of polygon
dy = yl-y0; - use flood-fill to draw interior

d = 2*dy-dx;
incKeepY = 2*dy;

incIncreaseY = 2*dy-2*dx;
for (x=x0; x <= x1; x++) { P /// IR
draw(x,Vv); // @) N
if then { | «=0/0]o| 4
Y=y +1; [o P
d += incIncreaseY; B ~—_| iy LA
} else { » ~
d += incKeepY;]
}

75 76

Review: Scanline Algorithms

 scanline: a line of pixels in an image
* set pixels inside polygon boundary along
horizontal lines one pixel apart vertically
* parity test: draw pixel if edgecount is odd
* optimization: only loop over axis-aligned
bounding box of xmin/xmax, ymin/ymax

Review: Bilinear Interpolation

* interpolate quantity along L and R edges,
as a function of y
* then interpolate quantity as a function of x

78

Review: Barycentric Coordinates

* non-orthogonal coordinate system based on triangle
itself
« origin: P, basis vectors: (P,-P,) and (P5-P,)

P =Py + B(P,P)+y(Ps-Py) V=g =
P= (1P +BPPs g L2
P = aP, + PP, +yP, =0
oty I\
o+p+y=1 . \) 3
0<=0,pB,y<=1 p=0 *A\ Awapy=
/ P2 (0,1,0)
p=1 o=1

79

Review: Computing Barycentric

Coordinates
« 2D triangle area (a.By) =

B (1,0,0)
* half of parallelogram area
+ from cross product

(ouByy) =

A = Apy tAp, tAp; (0,0,1)
B
B (o) =
(0,1,0)
B = Apy /A
weighted combination of three points
Y= Apz/A

80

Review: Painter’ s Algorithm

 draw objects from back to front
* problems: no valid visibility order for
* intersecting polygons
« cycles of non-intersecting polygons possible

Review: BSP Trees

* preprocess: create binary tree
* recursive spatial partition
* viewpoint independent

Review: BSP Trees

* runtime: correctly traversing this tree enumerates
objects from back to front
 viewpoint dependent: check which side of plane
viewpoint is on at each node

* draw far, draw object in question,
draw near

Review: Z-Buffer Algorithm

« augment color framebuffer with Z-buffer or
depth buffer which stores Z value at each
pixel
- at frame beginning, initialize all pixel depths
to oo

« when rasterizing, interpolate depth (Z)
across polygon

* check Z-buffer before storing pixel color in
framebuffer and storing depth in Z-buffer

» don’t write pixel if its Z value is more distant
than the Z value already stored there

Review: Depth Test Precision

* reminder: perspective transformation maps

eye-space (view) zto NDC z | .
Ex
—(—+AZ)
E 0 A Ofx| |Ex+Az Z
0 F B O}y| |Fy+Bz —(Q+Bz)
0 0 C D|z| |cz+D]| | \/*° b
0 0 -1 of1 2 -(C’f;)
1
D
® thus ZNDC=—C+—
Zeye

 depth buffer essentially stores 1/z

* high precision for near, low precision for distant
85

Review: Integer Depth Buffer

* reminder from picking: depth stored as integer
+ depth lies in the DCS z range [0,1]
« format: multiply by 2*n -1 then round to nearest int
* where n = number of bits in depth buffer
« 24 bit depth buffer = 2224 = 16,777,216 possible
values
« small numbers near, large numbers far
 consider depth from VCS: (1<<N)*(a+b/z)
* N = number of bits of Z precision
« a=zFar/ (zFar - zNear)
* b =2zFar * zNear / (zNear - zFar)

« z = distance from the eye to the object
86

Review: Object Space Algorithms

determine visibility on object or polygon level
* using camera coordinates

resolution independent

« explicitly compute visible portions of polygons
early in pipeline

- after clipping

requires depth-sorting

* painter’s algorithm

* BSP trees

87

Review: Image Space Algorithms

 perform visibility test for in screen coordinates
* limited to resolution of display
« Z-buffer: check every pixel independently

+ performed late in rendering pipeline

88

Review: Back-face Culling

works to cullif N, >0

Review: Invisible Primitives

* why might a polygon be invisible?
 polygon outside the field of view / frustum
* solved by clipping
* polygon is backfacing
* solved by backface culling
+ polygon is occluded by object(s) nearer the viewpoint
* solved by hidden surface removal

Review: Alpha and Premultiplication

» specify opacity with alpha channel o
* a=1: opaque, a=.5: translucent, a=0: transparent
* how to express a pixel is half covered by a red object?
« obvious way: store color independent from transparency (r,g,b,a)

« intuition: alpha as transparent colored glass
» 100% transparency can be represented with many different RGB values

* pixel value is (1,0,0,.5)
+ upside: easy to change opacity of image, very intuitive
» downside: compositing calculations are more difficult - not associative
« elegant way: premultiply by a so store (ar, ag, ab,a)
* intuition: alpha as screen/mesh
» RGB specifies how much color object contributes to scene
- alpha specifies how much object obscures whatever is behind it (coverage)
« alpha of .5 means half the pixel is covered by the color, half completely transparent
« only one 4-tuple represents 100% transparency: (0,0,0,0)
 pixel value is (.5, 0, 0, .5)
* upside: compositing calculations easy (& additive blending for glowing!)
» downside: less intuitive 91

Review: Complex Compositing
 foreground color A, background color B
* how might you combine multiple elements?
» Compositing Digital Images, Porter and Duff, Siggraph '84
« pre-multiplied alpha allows all cases to be handled simply
A over B i AoutB A xor B

Partially }
transparent »
AandB |

Conceptual
sub-pixel
overlay

Review: Texture Coordinates

« texture image: 2D array of color values (texels)

* assigning texture coordinates (s,t) at vertex with
object coordinates (x,y,z,w)

* use interpolated (s,t) for texel lookup at each pixel

+ use value to modify a polygon’s color
« or other surface property

* specified by programmer or artist girexcoorazf (s, t)
: glVertexf (x,y,z,w)

Review: Tiled Texture Map
m)

glTexCoord2d(1, 1);
glVertex3d (x, y, z);

Texture Object Mapped Texture
(0,00 ™ 1)

\ .
\“-_‘ _/

(4,0) (4,4)
Eaemmm
glTexCoord2d(4, 4); > — EEmmmm——
glVertex3d (%, y, 2); I o

(0’0) (0,4) Mapped Texture

texture
image |

(0,1) (1,1)

(0,0 (1,0)

Review: Texture

 action when s or t is outside [0...1] interval
« tiling
* clamping
« functions
* replace/decal
* modulate
* blend

* texture matrix stack
glMatrixMode (GL_TEXTURE) ;

Review: MIPmapping

* image pyramid, precompute averaged versions

With MIP-mapping’

Review: Bump Mapping: Normals As Texture

« create illusion of complex
geometry model

 control shape effect by
locally perturbing surface
normal

Review: Environment Mapping

» cheap way to achieve reflective effect
* generate image of surrounding
* map to object as texture
» sphere mapping: texture is distorted fisheye view
* point camera at mirrored sphere
* use spherical texture coordinates

Review: Perlin Noise: Procedural Textures

function marble (point)
X = point.x + turbulence (point);

return marble color (sin(x))

100

Review: Perlin Noise

» coherency: smooth not abrupt changes
* turbulence: multiple feature sizes

Review: Procedural Modeling

textures, geometry
* nonprocedural: explicitly stored in memory
procedural approach
« compute something on the fly
* not load from disk
« often less memory cost
* visual richness
- adaptable precision
noise, fractals, particle systems

Review: Language-Based Generation

* L-Systems /\

Initiator
Length=1

Generator

« F: forward, R: right, L: left

* Koch snowflake:
F = FLFRRFLF

* Mariano’s Bush:

Length=4/3

Level 2
Length=16/9

Level 3

Length=64/27

F=FF-[-F+F+F]+[+F-F-F]
* angle 16

http://spanky.triumf.ca/www/fractint/Isys/plants.html

Review: Fractal Terrain

1D: midpoint displacement A
« divide in half, randomly displaV\

* scale variance by half

2D: diamond-square
* generate new value at midpoint
* average corner values + random displacement
* scale variance by half each time

N2 g=

http://www.gameprogrammer.com/fractal.html

Review: Particle Systems Review: Clipping

« changeable/fluid stuff « analytically calculating the portions of
- fire, steam, smoke, water, grass, hair, dust, primitives within the viewport
waterfalls, fireworks, explosions, flocks
- life cycle

* generation, dynamics, death
« rendering tricks /

+ avoid hidden surface computations

f ~

™~

105 106

Review: Clipping Lines To Viewport Review: Cohen-Sutherland Line Clipping

« combining trivial accepts/rejects outcodes

« trivially accept lines with both endpoints inside all edges
of the viewport

« trivially reject lines with both endpoints outside the same
edge of the viewport

* 4 flags encoding position of a point relative to
top, bottom, left, and right boundary

+ otherwise, reduce to trivial cases by splitting into two . OC(p1):: 0 && 1010 1000 1001

segments —— ° V=Vmax
oc(pz)I 0 " o3
* trivial accept
— 0010 0000 0001
\ — / - (OC(p1) & "

1= Y=Y min

\ OC(p?)). _O 0110 | 0100 | 0101

N * trivial reject

=x . X=x
\o 107 X Xmin maex 108

Review: Polygon Clipping

* not just clipping all boundary lines
* may have to introduce new line segments

N
N

/
~
~7

Review: Sutherland-Hodgeman Clipping

« for each viewport edge
« clip the polygon against the edge equation for new vertex list
+ after doing all edges, the polygon is fully clipped

<t<i<l<i<i<

Y4

« for each polygon vertex
* decide what to do based on 4 possibilities
* is vertex inside or outside?
* is previous vertex inside or outside?

Review: Sutherland-Hodgeman Clipping

-« edge from p[i-1] to p[i] has four cases
 decide what to add to output vertex list

inside outside inside outside inside outside inside outside

pli-1] pli] pli] pli-1]

pli]] pli-1] pli
| pli] output | I no output | i output

pli] output

Review: RGB Component Color

» simple model of color using RGB triples

« component-wise multiplication
- (a0,a1,a2) * (b0,b1,b2) = (a0*b0, a1*b1, a2*b2)

Light x object = color

» why does this work?
» must dive into light, human vision, color spaces

Review: Trichromacy and Metamers

* three types of cones
* color is combination

of cone stimuli

* metamer: identically

perceived color
caused by very
different spectra

I

1
0.2- M L

ht fraction
sorbed

2

0.1-

li
al

s 7
400 500 600 700
wavelength (nm)

Pure Spectural Mixed-spectra
Color Metamer
[R—

o

I
I

Review: Measured vs. CIE Color Spaces

Primary intensity

e S0 w0 ™

Wavelength (nm)

measured basis
* monochromatic lights
» physical observations
* negative lobes

Trstimulus value

-

RIS (VP

s © s 8
FO S

Wavelength (nm)

 transformed basis
* “imaginary” lights
« all positive, unit area
* Yis luminance

Review: Chromaticity Diagram and Gamuts

 plane of equal brightness showing chromaticity
« gamut is polygon, device primaries at corners
* defines reprogucible color range

| BIK!

IPNEEEEE
. ARNEEEE
IEEBNEEN
ESSINNEE

Review: RGB Color Space (Color Cube)

+ define colors with (r, g, b)

amounts of red, green, and blue

» used by OpenGL
« hardware-centric

* RGB color cube sits within CIE

color space
» subset of perceivable colors
e scale, rotate, shear cube

(e]

Review: HSV Color Space

Energy Dominant Wavelength : Hue

Intensity

 hue: dominant wavelength, “color”
 saturation: how far from grey

+ value/brightness: how far from black/ |
white

¢ cannot convert to RGB with matrix _

alone S0 SN N 5 VR
Energy

Frequency

Violet

Pastel, Pale Color

Frequency

I
Red Violet

Very Saturated

-Frequency

Violet

Review: HSI/HSV and RGB

¢ HSV/HSI conversion from RGB
* hue same in both
* value is max, intensity is average

1
| SR-6+@-B] | ipsa),
H =cos”
J(R-G)* +(R-B)G-B) | H=360-H
HSI: G- min(R,G,B) I R+G+B
1 3
HSV: ¢_1_ min(R,G,B) y _ max(R,G,B)
V 118

Review: YIQ Color Space |

* color model used for color TV~ g %
* Y is luminance (same as CIE) & "
* | & Q are color (not same | as HSI!)
 using Y backwards compatible for B/W TVs
 conversion from RGB is linear

Y 030 059 0.1117[R
I{=10.60 -028 -032||G
0 021 -0.52 031 ||B

* green is much lighter than red, and red lighter

than blue
119

Review: Color Constancy

- automatic “white balance” from change in

illumination
 vast amount of processing behind the scenes!
* colorimetry vs. perception " Daylight

Do they match?

e e, |

Tungsten

it et .|

From Color Appearance Models, fig 8-1
120

Review: Splines

» spline is parametric
curve defined by control
points

* knots: control points
that lie on curve

* engineering drawing:
spline was flexible
wood, control points
were physical weights

A Duck (weight)

Ducks trace out curve
121

Review: Hermite Spline

- user provides Vo, VPZ/
 endpoints
* derivatives at endpoints

t=0

122

Review: Bézier Curves

« four control points, two of which are knots
* more intuitive definition than derivatives

« curve will always remain within convex hull
(bounding region) defined by control points

\Y Pi / "support”
= - A "chord" Q
t=1

t=0 /
P ,
1 Bezter
Hermite Specification Specification p

123

Review: Basis Functions

 point on curve obtained by multiplying each control
point by some basis function and summing

—x1
—x0
—x"1
—x0

124

Review: Comparing Hermite and Bézier

Hermite Bézier
12
_ . |
—x1 0.8 1 — B0
—x0 06 1 —B1
—x1 —B2
T —X0] 04 - T T \ —B3
777:, - - 0.2 1 /
0 I -

o
el

125

Review: Sub-Dividing Bézier Curves

« find the midpoint of the line joining M,,,, M, 5.
call it My,,3

126

Review: de Casteljau’ s Algorithm

+ can find the point on Bézier curve for any parameter
value t with similar algorithm

 for t=0.25, instead of taking midpoints take points 0.25 of the
way

demo: www.saltire.com/applets/advanced geometry/spline/spline.htm 127

Review: Continuity
 piecewise Bézier: no continuity guarantees

* continuity definitions /\/

- CY: share join point
. C1: share continuous derivatives
. C2: share continuous second derivatives

C, continuity .

Co & C; continuity Co & C; & C, continuity

148

Review: B-Spline

« Cy, C4, and C, continuous
* piecewise: locality of control point influence

(a)

(b)

129

Review: Visual Encoding

marks: geometric primitives
points lines areas

attributes T
position x| | x « attributes
.] T _ * parameters
Size LINE control mark
ovel T I 0 appearance
grey leve * separable
] E o= channels
texture j 8 E| flowing from
M retina to brain
color I I 0
orientation | | Y 4 ~
L= 7 =
shape 1% e
Semiology of Graphics. Jacques Bertin, Gauthier-Villars 1967, EHESS 1998 130

Review: Channel Ranking By Data Type

Quantitative Ordered Categorical
Position Position Position
Length Lightness Hue
Angle Saturation Texture
Slope Hue Connection
Area Texture Containment
Volume Connection Lightness
Lightness Containment Saturation
Saturation Length Shape
Hue Angle Length
Texture Slope Angle
Connection Area Slope
Containment Volume Area
Shape Shape Volume

[Mackmlay, Automatmg the Design of Graphical.:

....... Y R i P R §L G [PO I B AR

Review: Integral vs. Separable Channels

* not all channels separable

®e
\ ®
©¢ e T » D o=
e ® e _ o , ®° Z= o s
oo ”)» - 0 °°,
s = e @ :
YR o o
= e ,/ , e
© L X) - @ > e ® O 0
®c o [/
color. color color size . X-size red-gre
location motion shape orientation y-size yellow- que

[Colin Ware, Information Visualization:
Perception for Design. Morgan Kaufmann
1999.] 132

Review: Preattentive Visual Channels

« color alone, shape alone: preattentive

» combined color and shape: requires attention
» search speed linear with distractor count

[Christopher Healey, [www.csc.ncsu.edu/faculty/healey/PP/PP.html] 133

Review: InfoVis Techniques

3D often worse then 2D for abstract data
 perspective distortion, occlusion

* transform, use linked views
animation often worse than small multiples
o M ke

Asna hAa
aggregation and filtering

 focus+context
dimensionality reduction
parallel coordinates

Beyond 314: Other Graphics Courses

« 424. Geometric Modelling
+ was offered this year
426: Computer Animation
 will be offered next year

514: Image-Based Rendering - Heidrich
526: Algorithmic Animation - van de Panne
530P: Sensorimotor Computation - Pai
533A: Digital Geometry — Sheffer

547: Information Visualization - Munzner

135

