
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013

Collision/Acceleration

University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2013

Tamara Munzner

2

Reading for This Module

•  FCG Sect 12.3 Spatial Data Structures

3

Collision/Acceleration

4

Collision Detection
•  do objects collide/intersect?

•  static, dynamic
•  picking is simple special case of general

collision detection problem
•  check if ray cast from cursor position collides

with any object in scene
•  simple shooting

• projectile arrives instantly, zero travel time
•  better: projectile and target move over time

•  see if collides with object during trajectory

5

Collision Detection Applications
•  determining if player hit wall/floor/obstacle

•  terrain following (floor), maze games (walls)
•  stop them walking through it

•  determining if projectile has hit target
•  determining if player has hit target

•  punch/kick (desired), car crash (not desired)
•  detecting points at which behavior should change

•  car in the air returning to the ground
•  cleaning up animation

•  making sure a motion-captured character’s feet do not pass
through the floor

•  simulating motion
•  physics, or cloth, or something else

6

From Simple to Complex
•  boundary check

•  perimeter of world vs. viewpoint or objects
•  2D/3D absolute coordinates for bounds
•  simple point in space for viewpoint/objects

•  set of fixed barriers
•  walls in maze game

•  2D/3D absolute coordinate system
•  set of moveable objects

•  one object against set of items
•  missile vs. several tanks

•  multiple objects against each other
•  punching game: arms and legs of players
•  room of bouncing balls

7

Naive General Collision Detection
•  for each object i containing polygons p

•  test for intersection with object j containing
polygons q

•  for polyhedral objects, test if object i
penetrates surface of j
•  test if vertices of i straddle polygon q of j

•  if straddle, then test intersection of polygon q
with polygon p of object i

•  very expensive! O(n2)

8

Fundamental Design Principles
•  fast simple tests first, eliminate many potential collisions

•  test bounding volumes before testing individual triangles
•  exploit locality, eliminate many potential collisions

•  use cell structures to avoid considering distant objects
•  use as much information as possible about geometry

•  spheres have special properties that speed collision testing
•  exploit coherence between successive tests

•  things don’t typically change much between two frames

9

Example: Player-Wall Collisions
•  first person games must prevent the player

from walking through walls and other
obstacles

•  most general case: player and walls are
polygonal meshes

•  each frame, player moves along path not
known in advance
•  assume piecewise linear: straight steps on

each frame
•  assume player’s motion could be fast

10

Stupid Algorithm

•  on each step, do a general mesh-to-mesh
intersection test to find out if the player
intersects the wall

•  if they do, refuse to allow the player to move
•  problems with this approach? how can we

improve:
•  in response?
•  in speed?

11

Collision Response
•  frustrating to just stop

•  for player motions, often best thing to do is move
player tangentially to obstacle

•  do recursively to ensure all collisions caught
•  find time and place of collision
•  adjust velocity of player
•  repeat with new velocity, start time, start position

(reduced time interval)
•  handling multiple contacts at same time

•  find a direction that is tangential to all contacts

12

Accelerating Collision Detection

•  two kinds of approaches (many others also)
•  collision proxies / bounding volumes
•  spatial data structures to localize

•  used for both 2D and 3D
•  used to accelerate many things, not just

collision detection
•  raytracing
•  culling geometry before using standard

rendering pipeline

13

Collision Proxies
•  proxy: something that takes place of real object

•  cheaper than general mesh-mesh intersections
•  collision proxy (bounding volume) is piece of geometry used

to represent complex object for purposes of finding collision
•  if proxy collides, object is said to collide
•  collision points mapped back onto original object

•  good proxy: cheap to compute collisions for, tight fit to the real
geometry

•  common proxies: sphere, cylinder, box, ellipsoid
•  consider: fat player, thin player, rocket, car …

14

Trade-off in Choosing Proxies

 increasing complexity & tightness of fit

 decreasing cost of (overlap tests + proxy update)

AABB OBB Sphere Convex Hull 6-dop

•  AABB: axis aligned bounding box
•  OBB: oriented bounding box, arbitrary alignment
•  k-dops – shapes bounded by planes at fixed orientations

•  discrete orientation polytope

15

Pair Reduction
•  want proxy for any moving object requiring collision

detection
•  before pair of objects tested in any detail, quickly test if

proxies intersect
•  when lots of moving objects, even this quick bounding

sphere test can take too long: N2 times if there are N objects
•  reducing this N2 problem is called pair reduction
•  pair testing isn’t a big issue until N>50 or so…

16

Spatial Data Structures

•  can only hit something that is close
•  spatial data structures tell you what is close

to object
•  uniform grid, octrees, kd-trees, BSP trees
•  bounding volume hierarchies

• OBB trees
•  for player-wall problem, typically use same

spatial data structure as for rendering
• BSP trees most common

17

Uniform Grids

•  axis-aligned
•  divide space uniformly

18

Quadtrees/Octrees

•  axis-aligned
•  subdivide until no points in cell

19

KD Trees

•  axis-aligned
•  subdivide in alternating dimensions

20

BSP Trees

•  planes at arbitrary orientation

21

Bounding Volume Hierarchies

22

OBB Trees

23

Related Reading

•  Real-Time Rendering
•  Tomas Moller and Eric Haines
•  on reserve in CICSR reading room

24

Acknowledgement

•  slides borrow heavily from
•  Stephen Chenney, (UWisc CS679)
•  http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.ppt

•  slides borrow lightly from
•  Steve Rotenberg, (UCSD CSE169)
•  http://graphics.ucsd.edu/courses/cse169_w05/CSE169_17.ppt

