University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2013

Tamara Munzner

Collision/Acceleration

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013

Reading for This Module
« FCG Sect 12.3 Spatial Data Structures

Collision/Acceleration

Collision Detection

 do objects collide/intersect?
« static, dynamic

* picking is simple special case of general
collision detection problem

* check if ray cast from cursor position collides
with any object in scene

* simple shooting
* projectile arrives instantly, zero travel time
* better: projectile and target move over time
* see if collides with object during trajectory

Collision Detection Applications

determining if player hit wall/floor/obstacle
+ terrain following (floor), maze games (walls)
» stop them walking through it
determining if projectile has hit target
determining if player has hit target
» punch/kick (desired), car crash (not desired)
detecting points at which behavior should change
* car in the air returning to the ground
cleaning up animation

* making sure a motion-captured character’s feet do not pass
through the floor

simulating motion
 physics, or cloth, or something else

From Simple to Complex

* boundary check
 perimeter of world vs. viewpoint or objects
« 2D/3D absolute coordinates for bounds
* simple point in space for viewpoint/objects
« set of fixed barriers
« walls in maze game
» 2D/3D absolute coordinate system
+ set of moveable objects
* one object against set of items
* missile vs. several tanks
* multiple objects against each other
* punching game: arms and legs of players
» room of bouncing balls

Naive General Collision Detection

for each object i containing polygons p

« test for intersection with object j containing
polygons q

for polyhedral objects, test if object i

penetrates surface of j

- test if vertices of i straddle polygon q of j
- if straddle, then test intersection of polygon q
with polygon p of object i

very expensive! O(n?)

Fundamental Design Principles

 fast simple tests first, eliminate many potential collisions
 test bounding volumes before testing individual triangles
+ exploit locality, eliminate many potential collisions
+ use cell structures to avoid considering distant objects
« use as much information as possible about geometry
» spheres have special properties that speed collision testing
» exploit coherence between successive tests
+ things don’t typically change much between two frames

Example: Player-Wall Collisions

« first person games must prevent the player
from walking through walls and other
obstacles

* most general case: player and walls are
polygonal meshes

« each frame, player moves along path not
known in advance

« assume piecewise linear: straight steps on
each frame

« assume player’s motion could be fast

Stupid Algorithm

« on each step, do a general mesh-to-mesh
intersection test to find out if the player
intersects the wall

« if they do, refuse to allow the player to move

 problems with this approach? how can we
improve:
* in response?
* in speed?

10

Collision Response

« frustrating to just stop

« for player motions, often best thing to do is move
player tangentially to obstacle

» do recursively to ensure all collisions caught
« find time and place of collision
+ adjust velocity of player

* repeat with new velocity, start time, start position
(reduced time interval)

* handling multiple contacts at same time
+ find a direction that is tangential to all contacts

11

Accelerating Collision Detection

 two kinds of approaches (many others also)
* collision proxies / bounding volumes
* spatial data structures to localize

« used for both 2D and 3D

 used to accelerate many things, not just
collision detection

* raytracing

« culling geometry before using standard
rendering pipeline

12

Collision Proxies

proxy: something that takes place of real object

» cheaper than general mesh-mesh intersections
collision proxy (bounding volume) is piece of geometry used
to represent complex object for purposes of finding collision

« if proxy collides, object is said to collide

+ collision points mapped back onto original object
good proxy: cheap to compute collisions for, tight fit to the real
geometry
common proxies: sphere, cylinder, box, ellipsoid

 consider: fat player, thin player, rocket, car ...

13

Trade-off in Choosing Proxies

e

AABB OBB 6-dop

Sphere Convex Hull

»

increasing complexity & tightness of fit

decréSSNG COST Of (OVeTIap 1ests T proxy update)

« AABB: axis aligned bounding box
« OBB: oriented bounding box, arbitrary alignment

» k-dops — shapes bounded by planes at fixed orientations
« discrete orientation polytope

14

Pair Reduction

want proxy for any moving object requiring collision
detection

before pair of objects tested in any detail, quickly test if
proxies intersect

when lots of moving objects, even this quick bounding
sphere test can take too long: N2 times if there are N objects

reducing this N2 problem is called pair reduction
pair testing isn’ t a big issue until N>50 or so...

15

Spatial Data Structures

« can only hit something that is close
 spatial data structures tell you what is close
to object
* uniform grid, octrees, kd-trees, BSP trees
* bounding volume hierarchies
» OBB trees

« for player-wall problem, typically use same
spatial data structure as for rendering

* BSP trees most common

16

Uniform Grids Quadtrees/Octrees

* axis-aligned * axis-aligned
« divide space uniformly * subdivide until no points in cell
17 18
KD Trees BSP Trees
 axis-aligned planes at arbitrary orientation

* subdivide in alternating dimensions

19 20

Bounding Volume Hierarchies OBB Trees

YN
Related Reading Acknowledgement
« Real-Time Rendering * slides borrow heavily from
« Tomas Moller and Eric Haines » Stephen Chenney, (UWisc CS679)

* http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.ppt

« on reserve in CICSR reading room

* slides borrow lightly from
» Steve Rotenberg, (UCSD CSE169)

 http://graphics.ucsd.edu/courses/cse169_w05/CSE169_17.ppt

23 24

