
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013

Clipping

University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2013

Tamara Munzner

2

Reading for Clipping

•  FCG Sec 8.1.3-8.1.6 Clipping
•  FCG Sec 8.4 Culling

•  (12.1-12.4 2nd ed)

3

Clipping

4

Rendering Pipeline

Geometry
Database

Model/View
Transform. Lighting Perspective

Transform. Clipping

Scan
Conversion

Depth
Test Texturing Blending

Frame-
buffer

5

Next Topic: Clipping
•  we’ve been assuming that all primitives (lines,

triangles, polygons) lie entirely within the viewport
•  in general, this assumption will not hold:

6

Clipping

•  analytically calculating the portions of
primitives within the viewport

7

Why Clip?

•  bad idea to rasterize outside of framebuffer
bounds

•  also, don’t waste time scan converting pixels
outside window
•  could be billions of pixels for very close

objects!

8

Line Clipping

•  2D
•  determine portion of line inside an axis-aligned

rectangle (screen or window)
•  3D
•  determine portion of line inside axis-aligned

parallelpiped (viewing frustum in NDC)
•  simple extension to 2D algorithms

9

Clipping

•  naïve approach to clipping lines:
for each line segment
 for each edge of viewport
 find intersection point
 pick “nearest” point
 if anything is left, draw it

•  what do we mean by “nearest”?
•  how can we optimize this?

A

B

C
D

10

Trivial Accepts
•  big optimization: trivial accept/rejects

•  Q: how can we quickly determine whether a line
segment is entirely inside the viewport?

•  A: test both endpoints

11

Trivial Rejects

•  Q: how can we know a line is outside
viewport?

•  A: if both endpoints on wrong side of same
edge, can trivially reject line

12

Clipping Lines To Viewport
•  combining trivial accepts/rejects

•  trivially accept lines with both endpoints inside all edges
of the viewport

•  trivially reject lines with both endpoints outside the same
edge of the viewport

•  otherwise, reduce to trivial cases by splitting into two
segments

13

Cohen-Sutherland Line Clipping

•  outcodes
•  4 flags encoding position of a point relative to

top, bottom, left, and right boundary

•  OC(p1)=0010
•  OC(p2)=0000
•  OC(p3)=1001

x=xmin x=xmax

y=ymin

y=ymax

0000

1010 1000 1001

0010 0001

0110 0100 0101

p1

p2

p3

14

Cohen-Sutherland Line Clipping

•  assign outcode to each vertex of line to test
•  line segment: (p1,p2)

•  trivial cases
•  OC(p1)== 0 && OC(p2)==0

•  both points inside window, thus line segment completely visible
(trivial accept)

•  (OC(p1) & OC(p2))!= 0
•  there is (at least) one boundary for which both points are outside

(same flag set in both outcodes)
•  thus line segment completely outside window (trivial reject)

15

Cohen-Sutherland Line Clipping

•  if line cannot be trivially accepted or rejected,
subdivide so that one or both segments can be
discarded

•  pick an edge that the line crosses (how?)
•  intersect line with edge (how?)
•  discard portion on wrong side of edge and assign

outcode to new vertex
•  apply trivial accept/reject tests; repeat if necessary

16

Cohen-Sutherland Line Clipping
•  if line cannot be trivially accepted or rejected,

subdivide so that one or both segments can be
discarded

•  pick an edge that the line crosses
•  check against edges in same order each time

•  for example: top, bottom, right, left

A

B

D E
C

17

Cohen-Sutherland Line Clipping

•  intersect line with edge

A

B

D E
C

18

•  discard portion on wrong side of edge and assign
outcode to new vertex

•  apply trivial accept/reject tests and repeat if
necessary

Cohen-Sutherland Line Clipping

A

B

D
C

19

Viewport Intersection Code
•  (x1, y1), (x2, y2) intersect vertical edge at xright

•  yintersect = y1 + m(xright – x1)
• m=(y2-y1)/(x2-x1)

•  (x1, y1), (x2, y2) intersect horiz edge at ybottom
•  xintersect = x1 + (ybottom – y1)/m
• m=(y2-y1)/(x2-x1)

(x2, y2)
(x1, y1) xright

(x2, y2)

(x1, y1)
ybottom

20

Cohen-Sutherland Discussion
•  key concepts

•  use opcodes to quickly eliminate/include lines
• best algorithm when trivial accepts/rejects are

common
•  must compute viewport clipping of remaining

lines
• non-trivial clipping cost
•  redundant clipping of some lines

•  basic idea, more efficient algorithms exist

21

Line Clipping in 3D
•  approach

•  clip against parallelpiped in NDC
• after perspective transform

•  means that clipping volume always the same
•  xmin=ymin= -1, xmax=ymax= 1 in OpenGL

•  boundary lines become boundary planes
• but outcodes still work the same way
• additional front and back clipping plane

•  zmin = -1, zmax = 1 in OpenGL

22

Polygon Clipping

•  objective
•  2D: clip polygon against rectangular window

•  or general convex polygons
•  extensions for non-convex or general polygons

•  3D: clip polygon against parallelpiped

23

Polygon Clipping

•  not just clipping all boundary lines
•  may have to introduce new line segments

24

•  what happens to a triangle during clipping?
•  some possible outcomes:

•  how many sides can result from a triangle?
•  seven

triangle to triangle

Why Is Clipping Hard?

triangle to quad triangle to 5-gon

25

•  a really tough case:

Why Is Clipping Hard?

concave polygon to multiple polygons

26

Polygon Clipping

•  classes of polygons
•  triangles
•  convex
•  concave
•  holes and self-intersection

27

Sutherland-Hodgeman Clipping
•  basic idea:

•  consider each edge of the viewport individually
•  clip the polygon against the edge equation
•  after doing all edges, the polygon is fully clipped

28

Sutherland-Hodgeman Clipping
•  basic idea:

•  consider each edge of the viewport individually
•  clip the polygon against the edge equation
•  after doing all edges, the polygon is fully clipped

29

Sutherland-Hodgeman Clipping
•  basic idea:

•  consider each edge of the viewport individually
•  clip the polygon against the edge equation
•  after doing all edges, the polygon is fully clipped

30

Sutherland-Hodgeman Clipping
•  basic idea:

•  consider each edge of the viewport individually
•  clip the polygon against the edge equation
•  after doing all edges, the polygon is fully clipped

31

Sutherland-Hodgeman Clipping
•  basic idea:

•  consider each edge of the viewport individually
•  clip the polygon against the edge equation
•  after doing all edges, the polygon is fully clipped

32

Sutherland-Hodgeman Clipping
•  basic idea:

•  consider each edge of the viewport individually
•  clip the polygon against the edge equation
•  after doing all edges, the polygon is fully clipped

33

Sutherland-Hodgeman Clipping
•  basic idea:

•  consider each edge of the viewport individually
•  clip the polygon against the edge equation
•  after doing all edges, the polygon is fully clipped

34

Sutherland-Hodgeman Clipping
•  basic idea:

•  consider each edge of the viewport individually
•  clip the polygon against the edge equation
•  after doing all edges, the polygon is fully clipped

35

Sutherland-Hodgeman Clipping
•  basic idea:

•  consider each edge of the viewport individually
•  clip the polygon against the edge equation
•  after doing all edges, the polygon is fully clipped

36

Sutherland-Hodgeman Algorithm
•  input/output for whole algorithm

•  input: list of polygon vertices in order
•  output: list of clipped polygon vertices consisting of old vertices

(maybe) and new vertices (maybe)
•  input/output for each step

•  input: list of vertices
•  output: list of vertices, possibly with changes

•  basic routine
•  go around polygon one vertex at a time
•  decide what to do based on 4 possibilities

•  is vertex inside or outside?
•  is previous vertex inside or outside?

37

Clipping Against One Edge
•  p[i] inside: 2 cases

outside inside inside outside

p[i]

p[i-1]

output: p[i]

p[i]

p[i-1] p

output: p, p[i]

38

Clipping Against One Edge
•  p[i] outside: 2 cases

p[i]

p[i-1]

output: p

p[i]

p[i-1]

p

output: nothing

outside inside inside outside

39

Clipping Against One Edge
clipPolygonToEdge(p[n], edge) {

for(i= 0 ; i< n ; i++) {
if(p[i] inside edge) {
 if(p[i-1] inside edge) output p[i]; // p[-1]= p[n-1]
 else {
 p= intersect(p[i-1], p[i], edge); output p, p[i];
 }
} else { // p[i] is outside edge
if(p[i-1] inside edge) {
 p= intersect(p[i-1], p[I], edge); output p;
}

}
}

40

Sutherland-Hodgeman Example

inside outside

p0

p1

p2

p3 p4

p5 p7 p6

41

Sutherland-Hodgeman Discussion
•  similar to Cohen/Sutherland line clipping

•  inside/outside tests: outcodes
•  intersection of line segment with edge:

window-edge coordinates
•  clipping against individual edges independent

•  great for hardware (pipelining)
•  all vertices required in memory at same time

• not so good, but unavoidable
• another reason for using triangles only in

hardware rendering

