University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2013

Tamara Munzner

Reading for Clipping

* FCG Sec 8.1.3-8.1.6 Clipping
» FCG Sec 8.4 Culling
* (12.1-12.4 2nd ed)

Rendering Pipeline

Geometry

Model/View| Lighti Perspectivi
Database Transform. 'ghting Transform.

—

Cipping H

— Clipping L
C||pp|ng Consvc:rr;ionH Texturing ‘ D::;t‘h H Blending T:fr;‘;-
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013
Next Topic: Clipping Clipping Why Clip? Line Clipping

+ we’ ve been assuming that all primitives (lines,
triangles, polygons) lie entirely within the viewport

* in general, this assumption will not hold:

N

* analytically calculating the portions of
primitives within the viewport

r//
T~

* bad idea to rasterize outside of framebuffer
bounds
« also, don’ t waste time scan converting pixels
outside window
« could be billions of pixels for very close
objects!

* 2D
« determine portion of line inside an axis-aligned
rectangle (screen or window)

*3D

« determine portion of line inside axis-aligned
parallelpiped (viewing frustum in NDC)

« simple extension to 2D algorithms

Clipping

* naive approach to clipping lines:
for each line segment
for each edge of viewport
find intersection point
pick “nearest” point
if anything is left, draw it

B
« what do we mean by “nearest”? /-D/'
* how can we optimize this? ~Tc
A

Trivial Accepts

* big optimization: trivial accept/rejects
» Q: how can we quickly determine whether a line
segment is entirely inside the viewport?

« A: test both endpoints

\"T— /

Trivial Rejects

* Q: how can we know a line is outside
viewport?

« A: if both endpoints on wrong side of same
edge, can trivially reject line

N

Clipping Lines To Viewport

« combining trivial accepts/rejects

« trivially accept lines with both endpoints inside all edges
of the viewport

« trivially reject lines with both endpoints outside the same
edge of the viewport

« otherwise, reduce to trivial cases by splitting into two

segments

AN

Cohen-Sutherland Line Clipping

* outcodes
+ 4 flags encoding position of a point relative to
top, bottom, left, and right boundary
1010 1000 1001
+ OC(p1)=0010 °
+ OC(p2)=0000 °pl
« OC(p3)=1001 0010 0000 0001
op2
0110 0100 0101

X=X X=X e

Y=V min

P3 V=V max

Cohen-Sutherland Line Clipping

« assign outcode to each vertex of line to test
« line segment: (p1,p2)
« trivial cases
« OC(p1)==0 && OC(p2)==0
+ both points inside window, thus line segment completely visible
(trivial accept)
« (OC(p1) & OC(p2))!=0
- there is (at least) one boundary for which both points are outside
(same flag set in both outcodes)
+ thus line segment completely outside window (trivial reject)

Cohen-Sutherland Line Clipping

if line cannot be trivially accepted or rejected,
subdivide so that one or both segments can be
discarded

pick an edge that the line crosses (how?)
intersect line with edge (how?)

discard portion on wrong side of edge and assign
outcode to new vertex

apply trivial accept/reject tests; repeat if necessary

Cohen-Sutherland Line Clipping

if line cannot be trivially accepted or rejected,
subdivide so that one or both segments can be
discarded
pick an edge that the line crosses
« check against edges in same order each time
« for example: top, bottom, right, left

A/

Cohen-Sutherland Line Clipping

* intersect line with edge

A/

Cohen-Sutherland Line Clipping

« discard portion on wrong side of edge and assign
outcode to new vertex

D,

c

A/

« apply trivial accept/reject tests and repeat if
necessary

Viewport Intersection Code

* (X4, Y1), (Xo, yp) intersect vertical edge at X;ig
* Vintersect = Y1 * M(Xright — X1)
* M=(Yo-y1)/(Xp-X1)
(%2, ¥2)

(X4, Yq) Xright

* (X4, Y1), (X9, ¥p) intersect horiz edge at ypqyyom
* Xintersect = X1 * (Ypottom — Y1)/m
* M=(yp-y1)/(Xa-X4) (2. ¥2)

Ybottom

(X1, ¥4)

Cohen-Sutherland Discussion

 key concepts
« use opcodes to quickly eliminate/include lines

« best algorithm when trivial accepts/rejects are
common

= must compute viewport clipping of remaining
lines

« non-trivial clipping cost
« redundant clipping of some lines
» basic idea, more efficient algorithms exist

20

Line Clipping in 3D
» approach
« clip against parallelpiped in NDC
« after perspective transform

» means that clipping volume always the same
* Xmin=ymin= -1, xmax=ymax= 1 in OpenGL

» boundary lines become boundary planes
« but outcodes still work the same way

« additional front and back clipping plane
* zmin = -1, zmax = 1 in OpenGL

Polygon Clipping
* objective
« 2D: clip polygon against rectangular window
« or general convex polygons
« extensions for non-convex or general polygons
« 3D: clip polygon against parallelpiped

Polygon Clipping

« not just clipping all boundary lines
* may have to introduce new line segments

N
NN

N

Why Is Clipping Hard?

» what happens to a triangle during clipping?
» some possible outcomes:

>

triangle to triangle

>

triangle to 5-gon
* how many sides can result from a triangle?
- seven

triangle to quad

Why Is Clipping Hard?

* areally tough case:

concave polygon to multiple polygons

Polygon Clipping
« classes of polygons
« triangles
* convex
* concave

» holes and self-intersection

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

4
<7

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

/

4 <

28

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
« after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
« after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

)

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Algorithm

« input/output for whole algorithm

« input: list of polygon vertices in order
- output: list of clipped polygon vertices consisting of old vertices
(maybe) and new vertices (maybe)

« input/output for each step

* input: list of vertices
« output: list of vertices, possibly with changes

* basic routine

+ go around polygon one vertex at a time

« decide what to do based on 4 possibilities
« is vertex inside or outside?
« is previous vertex inside or outside?

Clipping Against One Edge

« p[i] inside: 2 cases

inside outside inside | outside
pli-1]

plil

output: p[i] output: p, p[i] 3

Clipping Against One Edge

« p[i] outside: 2 cases

inside outside inside | outside

pli-1] plil
pli] .

pli-1]

output: p

output: nothing

38

Clipping Against One Edge
clipPolygonToEdge(p[n], edge) {
for(i=0;i<n;i++){
if(p[i] inside edge) {
if(p[i-1] inside edge) output p[i]; // p[-1]= p[n
else {
p= intersect(p[i-1], p[i], edge); output p, p[i];
}

-1]

}else{ /1 pli] is outside edge

if(p[i-1] inside edge) {
p= intersect(p[i-1], p[l], edge); output p;
}

Sutherland-Hodgeman Example

inside outside

40

Sutherland-Hodgeman Discussion

« similar to Cohen/Sutherland line clipping
« inside/outside tests: outcodes
« intersection of line segment with edge:
window-edge coordinates
« clipping against individual edges independent
« great for hardware (pipelining)
« all vertices required in memory at same time
* not so good, but unavoidable

« another reason for using triangles only in
hardware rendering

41

