Introduction to Computer Systems

Unit 3
Course Review

Learning Goals 1

Memory

* Endianness and memory-address alignment

Globals

* Machine model for access to global variables; static and dynamic arrays and structs
Pointers

¢ Pointers in C, & and * operators, and pointer arithmetic
Instance Variables

* Instance variables of objects and structs

Dynamic Storage

* Dynamic storage allocation and deallocation

If and Loop

* If statements and loops

Procedures

* Procedures, call, return, stacks, local variables and arguments
Dynamic Flow Control

* Dynamic flow control, polymorphism, and switch statements

Learning Goals 2

Read Assembly

* Read assembly code

Write Assembly

* Write assembly code

ISA-PL Connection

» Connection between ISA and high-level programming language
Asynchrony

* PIO, DMA, interrupts and asynchronous programming
Threads

¢ Using and implementing threads

Synchronization

* Using and implementing spinlocks, monitors, condition variables and semaphores
Virtual Memory

* Virtual memory translation and implementation tradeoffs

Big Ideas: First Half

Static and dynamic

* anything that can be determined before execution (by compiler) is called
static

e anything that can only be determined during execution (at runtime) is
called dynamic

SM-213 Instruction Set Architecture
* hardware context is CPU and main memory with fetch/execute loop

valC sl
h dst s
—

Memory

SICA well
SICB sl
opCode wwii

|-> Fetch Instruction from Memory HExecute it)-)[Tick Clock)_l

Memory Access

Memory is

* an array of bytes, indexed by byte address

Memory access is
* restricted to a transfer between registers and memory

* the ALU is thus unchanged, it still takes operands from registers
* this is approach taken by Reduced Instruction Set Computers (RISC)

Common mistakes

* wrong: trying to have instruction read from memory and do computation all at once

must always load from memory into register as first step, then do ALU computations from registers only

= wrong: trying to have instruction do computation and store into memory all at once
- all ALU operations write to a register, then can store into memory on next step

—_—

«
= N
- R

o E——
R
=) —

Memory B 3

Loading and Storing

load into register

* immediate value: 32-bit number directly inside instruction

« from memory: base in register, direct offset as 4-bit number
- offset/4 stored in machine language

- common mistake: forget 0 offset when just want store value from register into memory
« from memory: base in register, index in register
- computed offset is 4°index
* from register
store into memory
* base in register, direct offset as 4-bit number

* base in register, index in register

* common mistake: cannot directly store immediate value into memory]

Name Semantics Assembly Machine
load immediate |r[d] « v Id $v, rd 0d-- vvvvvvvv
load base+offset |r[d] + m[r[s]+(0o=p*4)] Id o(rs), rd 1psd
load indexed r[d] < m[r[s]+4*r[i]] Id (rs,ri,4), rd 2sid
‘register move ‘r[d] « r[s] ‘mov rs, rd ‘605d ‘
‘store base+offset ‘m[r[d]+(o=p*4)] + rls] ‘st rs, o(rd) ‘3spd ‘
‘store indexed ‘m[r[d]+4*r[i]] « r[s] ‘st rs, (rd,ri,4) ‘4sdi ‘

Numbers

Common mistakes
treating hex number as decimal: interpret 0x20 as 20, but it’s actually decimal 32

- using decimal number instead of hex: writing 0x20 when you meant decimal 20

- wasting your time converting into format you don’t particularly need

- wasting your time trying to do computations in unhelpful format
- think: what do you really need to answer the question?
« adding small numbers easy in hex: B+2=D
- for serious computations consider converting to decimal

- unless multiply/divide by power of 2: then hex or binary is fast with bitshifting!

N u m bers dec |hex |bin
0 o 0000

Hex vs. decimal vs. binary e
*in SM-213 assembly 3 |3 ool
- 0x in front of number means it’s in hex u u o100

5 5 o101

- otherwise it's decimal 6 6 0110

* converting from hex to decimal ; ; T(I)ll)lll
- convert each hex digit separately to decimal 5 5 1001

- 0x2a3 = 2x162 + 10x16" + 3x16° 0 |A 1010
 converting from hex to binary :; BC :?:n;
- convert each hex digit separately to binary: 4 bits in one hex digit 13 D 1ol

» converting from binary to hex :: E :::‘I’

- convert each 4-bit block to hex digit

* exam advice

- reconstruct your own lookup table in the margin if you need to do this

Two's Complement: Reminder

unsigned

e all possible values interpreted as positive numbers

«int (32 bits)

signed: two's complement
« the first half of the numbers are positive, the second half are negative

e start at 0, go to top positive value, "wrap around" to most negative value,
end up at -1

-2,147,483,648

0 4,294,967,295
& i
0x0 Oxffffffff

[-

-1

2,147,483,647

v

0x80000000 Oxffffffffox0

>

Ox7fffffff

Two's Complement and Sign Extension

Common mistakes:

« forgetting to pad with Os when sign extended

normally, pad with Os when extending to larger size
* 0x8b byte (139) becomes 0x0000008b int (139)
but that would change value for negative 2's comp:
* 0xff byte (-1) should not be 0x000000ff int (255)

so: pad with Fs with negative numbers in 2's comp:
* Oxff byte (-1) becomes Oxffffffff int (-1)
¢ in binary: padding with 1, not 0

reminder: why do all this?

* add/subtract works without checking if number positive or negative

Endianness
Memory
Consider 4-byte memory word and 32-bit register
¢ it has memory addresses i, i+1, i+2, and i+3
e we’ll just say its “at address i and is 4 bytes long”
°e.g., the word at address 4 is in bytes 4, 5, 6 and 7.
Big or Little Endian
* we could start with the BIG END of the number

- most computer makers except for Intel, also network protocols

i+1

i+2

FEEL

i+3

| i i+t | i+2 | i+3 |

23110224 22819216 2151928 271020 Register bits
*or we could start with the LITTLE END
- Intel

| i+3 || i+2 || i+t | i |

2311022 2219216 2151028 271020 Register bits

Alignment

Power-of-two aligned addresses simplify hardware
* required on many machines, faster on all machines

* computing alignment: for what size integers is address X aligned?
- byte address to integer address is division by power to two, which is just shifting bits
jl2"==j>>k (j shifted k bits to right)
- convert address to decimal; divide by 2, 4, 8, 16, ; stop as soon as there’s a remainder

- convert address to binary; sweep from right to left, stop when find a 1

Static Variable Access static arrays)

Static Memory Layout

int a;

int b[10];

void foo () {

bla] = a;
}

Key observations

0x1000: value of a
0x2000: value of b[0]

0x2004: value of b[1]

6;<2020: value of b[9]

* address of b[a] cannot be computed statically by compiler

* address can be computed dynamically from base and index stored in

registers

- element size can known statically, from array type

Array access: use load/store indexed instruction

Static vs Dynamic Arrays

Same access, different declaration and allocation
« for static arrays, the compiler allocates the whole array
« for dynamic arrays, the compiler allocates a pointer

int a; int a;
int b[10]; int* b;
void foo () { void foo () {
bla] = a; b = (int*) malloc (10*sizeof(int));
} bla] = a;

}

0x2000: value of b[0]
0x2004: value of b[1]

r()x2000: value of b }

Id $a_data, rO # rO = address of a

6;<2024: value of b[9]

Name Semantics Assembly Machine
load indexed r[d] < m[r[s]+4*r[i]] Id (rs,ri,4), rd 2sid
store indexed m[r[d]+4*r[il] « r[s] strs, (rd,ri,4) 4sdi

Id (r0), r1 #rl=a
Id $b_data, r2 # r2 = address of b
Id(2),r3 #r3="D

Id $a_data, r0 # rO = address of a
Id (r0), r1 #rl=a

Id $b_data, r2 # r2 = address of b
strl, (r2,r1,4) # bla] = a

strl, (r3,r1,4) # bla] = a

extra dereference

Dereferencing Registers

Common mistakes
* no dereference when you need it
* extra dereference when you don’t need it
° example
Id $a_data, rO # r0 = address of a
Id (r0), r1 #rl=a
Id $b_data, r2 # r2 = address of b

Id (r2), r3 #r3=>b
strl, (r3,r1,4) # bla] = a

- a dereferenced once

- b dereferenced twice
+ once with offset load

* once with indexed store
* no dereference: value in register
 one dereference: address in register

* two dereferences: address of pointer in register

Basic ALU Operations

Arithmetic
Name S ti Assembly Machine
register move r[d] + r[s] mov rs, rd 60sd
add r[d] « r[d] + r[s] add rs, rd 61sd
and r[d] « r[d] & r[s] and rs, rd 62sd
inc r[d] « r[d] + 1 incrd 63-d
inc address r[d] < r[d] + 4 inca rd 64-d
dec rld] « r[d] - 1 dec rd 65-d
dec address r[d] « r[d] - 4 deca rd 66-d
not r[d] « ~ r[d] not rd 67-d
Shifting, NOP and Halt
Name Semantics Assembly Machine
shift left r[d] « r[d] <<S=s shlrd, s 2dSS
shift right r[d] < r[d] >> S = -s shrrd, s
halt halt machine halt fO--
nop do nothing nop ff--

Summary: Static Scalar and Array Variables

Static variables

* the compiler knows the address (memory location) of variable
Static scalars and arrays

* the compiler knows the address of the scalar value or array
Dynamic arrays

* the compiler does not know the address the array

What C does that Java doesn’t

o static arrays

* arrays can be accessed using pointer dereferencing operator
« arithmetic on pointers

Structs
V struct D { struct D dO; address of dO
ruct [firuco do] ross
long long f;
intg; address of d0.e

L address of d0.f
address of d0.g

F0x1000: value of d0.e
0x1004: value of d0.f
0x100c: value of d0.g

Key observation
« offset from base of struct to a specific field is static

- can always be computed by compiler

compute offset from index

* address can be computed dynamically from base stored in register and
offset computed by compiler and encoded directly into instruction

- difference from arrays: fields do not all have to be same size, so cannot necessarily

Static vs. Dynamic Structs

struct D {
inte;
intf;
k

Static and dynamic differ by an extra memory access

* dynamic structs have dynamic address that must be read from memory

struct D* d1; I
dl->e = d1->f;
[ox1000: 0x2000 2

0x2000: value of d1->e
0x2004: value of d1->f

struct D dO;
d0.e = d0.f;

0x1000: value of d0.e
0x1004: value of dO.f

m[0x1000] « m[0x1004]

Static Control Flow for If/Loop

conditional branches: do if register is

© equal to zero

* greater than zero

* often requires ALU calculation to change condition into zero check

- tradeoff is keep ISA compact, vs. require more instructions to execute desired behavior
continue with RISC approach: pick compact

unconditional
* PC-relative (branch)
8 bits to encode address with respect to current PC, fits into 2-byte instruction
- in assembly, target is label specifying location
* absolute (jump)

32 bits to encode address, requires 6-byte instruction

. . m[m[0x1000]+0] « m[m[0x1000]+4] Name Semantics Assembly| Machine
What J d that C d " Struct access: use load/store offset instruction oranch oc — (a==pct00°2) br a 800
at Java aoes tha oesn =
)) Name Semantics A bly Machine r[0] « 0x1000 r[0] « 0x1000 branch if equal |pc « (a==pc+00+2) if r[c]== beqrc,a |9coo
» typesafe dynamic allocation load base+offset |r[d] « mir[s]+(o=p*4)] Id o(rs), rd 1psd (2] e mirioj+4] :B} : m{:{(ﬂlm branch if greater |pc + (a==pc+00+2) if r[c]>0 bgtrc,a |acoo
* automatic array-bounds checking store base+offset |m[r[d]+(o=p*4)] + r[s] st rs, o(rd) 3spd m[r[0]] « r[2] mir[1]] « r2] extra dereference jump pc « a (a specified as label) ja b--- aaaaaaaa
v 10 20
° . o o
Implementing for Loops Implementing if-then-else Static Control Flow: Procedure Calls Procedure Storage Needs
temp_i=0 if (a>b) frame
o) temp_s=0 . Set up return value >
for (i=0; _|<10; i++) loop: temp_t=temp_i-9 max = a, temp_a=a P . o frame K " [local 0
s += alil; if temp_t>0 goto end_loop else temp_b=b * read the value of the program counter (PC): convention is to use ré * arguments pointer ocal
i temp_s]—:a[temp_i] - max = b; tgeoT(?;ﬁ:r:ei;n(?E?;;eng_)b * increment to skip next two instructions (incr itself, and jump) .l | iabl local variables
Transformation temp_i++ . . . else: temp_max=temp_b Do jump to callee ocal vanables
- goto loop Transformations: same idea goto end_if) _ _ o « saved registers
e calculate condition into zero check dl - o then: temp_max=temp_a * jump to a dynamically determined target address stored in register -
end_loop: s=temp_s « calculate condition into zero check end_if: max=temp_max g ; return addr retaddr | saved registers
« use two branches i=temp_i brorches f -1 max=temp.- Procedure call: use indirect jump (with zero offset) eturn address 250
it °two branches for most cases access through offsets from top larg0]
- conditional to end at start
i N . . a t
- unconditional after loop body Id $0x0, r0 #r0 =temp_i =0 conditional on top 1 $a 0 #10 = &a Name Semantics Assembly| Machine * just like structs with base SEOUIMENES
Id $a,rl #rl = address of a[0] - unconditional to bottom to skip next case Id Oxb(rO). 0 #10 = a get pc r[d] « pc + (o==p*2) gpc $o, rd |6fpd
* defer store to memory :g §g§?f'ffrf2ff7 v trrzzl: tegnp75 =0 + except for last case, do not need Id $b,r1 #rl=28&b indirect jump pc « r[s] + (0==pp*2) j o(rs) cspp 0x1000 pointer
-) =") Id 0x0(r1), rl #r1= .
only after loop end loop: mov r0, r5 #15 = temp_i * defer store to memory when possible b o Al simple example X =
- (when posssible) add r4,r5 #15 = temp_i-9 not r2 #temp_c=1!b .) 0x1000 local 0 | | iabl
bgt r5, end_loop # if temp_i>9 goto +4 inc r2 #tempc=-b void foo () { X _ X . *two local vars ocal variables
Id (1.0, 8, 13 #13 = altemp.] - - add 10, 12 Ftombe = ab ping 0; foo: gpc $6,r6 # 16 = pc of next instruction 0x1004 |local 1
add 13, 12 Jemp-s += altem.] Common mistake (if and for) o, PO 121 then # 1 @b) goto +2 } j ping # goto ping () * saved return address 0x1008 |ret addr || saved register
_l else: mov rl,r. emp_max =
br loop #goto -7 e only using one branch br end_if #goto +1
end_loop: Id $s,rl #rl = address of s then: mov r0, r3 # temp_max = a - . ~
st r2, 0x0(rl) #s =temp_s end_if: Id $max, r0 #r0 = &max id pi .
st r0, Ox4(rl) #i=temp_i st r3, 0x0(r0) # max = temp_max void ping 0 {} ping: j 0(r6) # return
21 2 2 24
Stack vs. Heap y Snippet 8: Caller vs. Callee Stack Frame Setup Arguments and Return Value
address memory
. . i 0x00000000 foo: deca r5 # sp-=4 for ra] 1 allocate frame void three () {
split memory into two pieces L st 16,(5) #'sp=ra save r6 !n: i; —_— Return value
intJ sp 1968 Frame Three . . .
* heap grows down > gpc $6, r6 #16 = pc intk; w e convention: store in r0 register
og . (e 2 b0 } , 9
* stack grows up sp Ox4fea |[|Frame C . ot a do not touch r6 ° common mistake:
> 4) ptr +
f sp Ox4ffO Frame B stack Id (r5), r6 #ra=*sp restore r6 void two () { - push return value on stack instead of using r0
move stack pointer up to P > inca rs # sp+=4 to discard ra 6 deallocate frame inti; ptr + 8 L
smaller number when add sp 0x4ff6_ ||Frame A j (9 # return return int j; Arguments
frame sp 0x5000 ||Struct A frre— - three 0; sp 12:O+ o qave 16 to stack at (sp *in registers or on stack
t 16, (r5) #*sp=ra save r6 and allocate . hi tack i k., but hold limited b
s . Struct B heap s - 3 +8) then pushing on stack requires more work, but holds unlimited number
but within frame, offsets still go down doca 1§ to—=4 for i frame oneo ptr + 4 Sm)rﬁ_ N ToTwo
Struct C 4 void one () { : * work must be done by caller
pointer - inti; ptr + 8 [[ret addr: $retToOne « common mistake:
Id $0,r0 #r0=0 .
local 0 | Frame A st 10, 0x0(r5) #10 =0 wo 0;) -
ptr + 3 | = id $Ox1, r0 #10-1 4 body } sp 1992 Frame One save r6 to stack at (sp allocate space and save off arguments to stack in callee
ptr + oca st 10, 0x4(r5) #11 =1 - ptr + 0 +4) th.en
ptr + 8 ||ret addr void foo () { set r6: $retToOne
£ incars #sp += 4 to discard 10 /] r5 = 2000 ptr + 4 ret addr: $retToFoo
. . . incars # sp += 4 to discard 11 deallocate frame one ();
: Id (r5), r6 #ra=*
convention: r5 is stack pointer address " #5p += 4 to discard ra 5 return } [Frame Foo | 16: SretToFoo
OxFFFffff i (6 # return sp 2000

V

Stack Summary

stack is managed by code that the compiler generates
« stack pointer (sp) is current top of stack (stored in r5)
- grows from bottom up towards 0
push (allocate) by decreasing sp value, pop (deallocate) by increasing sp value
accessing information from stack
« callee accesses local variables, saved registers, arguments as static offsets from base of stack pointer (r5)
stack frame for procedure created by mix of caller and callee work

common mistake: confusion about what caller vs callee should do
« caller setup
if arguments passed through stack: allocates room for them and save them to stack
Sets up new value of 6 return address (to next instruction in this procedure, after the jump)
saves registers 10-13 o stack if expect to use values after call
jumps to callee code
« callee setup (prologue)
unless leaf procedure, allocates room for old value of r6 and saves It to stack
save 14, 7 to stack f they will be overwritten
allocates space on stack for local vriables
« callee teardown (epilogue)
ensure return value in 10
- deallocates stack frame space for ocals
unless leaf procedure, restores old 16 and deallocates that space on stack
if previously saved, restore old r4/r7 and deallocate that space on stack
jump back to return address (location stored in 16)
« caller teardown
- deallocates stack frame space for arguments
restore r0-13 if previously saved to stack, deallocate that space
use return value (if any) in r0

The bug

void printPrefix (char* str) {
char buf{10];

Security Vulnerability: Buffer Overflow

« if position of the first *.” in str is more than 10 bytes from the beginning of
str, this loop will write portions of str into memory beyond the end of buf

The Stack when
printPrefix is

e attacker can change printPrefix’s return address
- buf[XX] can overwrite return address on stack frame

- instead of return to caller code, “return” to attacker’s code

+ execute arbitrary code

running
// copy str up to "." input buf pointer'
while (*strl=".") buf [0 ..9]
*(bp++) = *(str++);
*bp = 0;
other stuff
The vulnerability —

Variables Summary

Global variables

* address know statically

Reference variables

e variable stores address of value (usually allocated dynamically)
Arrays

* elements, named by index (e.g. a[i])

¢ address of element is base + index * size of element

- base and index can be static or dynamic; size of element is static
Instance variables
« offset to variable from start of object/struct know statically
* address usually dynamic
Locals and arguments
« offset to variable from start of activation frame know statically
* address of stack frame is dynamic

Pointers

Notation
*& X the address of X
o* X the value X points to

- we also call this operation dereferencing

:ELE address of a 0x1000: 3 value of a

void fgo 01 address of b 0x2000: 0x3000§ value of b

a=3;

)*b =4 address of *b 0x3000: 4 value of *b

*&a = 0x1000, a = 3, *a = (whatever is at address 0x3...)
* &b = 0x2000, b = 0x3000, *b = 4

* common mistakes
- use address of pointer

- try to dereference integer storing value

Pointer Arithmetic in C

Alternative to a[i] notation for dynamic array access

* a[x] equivalent to *“(a+x)

* &a[x] equivalent to (a+x)

Pointer arithmetic takes into account size of datatype

0x2000: value of a[0]
0x2004: value of a[1]
0x2008: value of a[2]
0x200a: value of a[3]

int a[4];

- &a[0] = 0x2004; &a[2] = 0x2008
& a[2]) - &a[l]) == 1 == (a+2) - (a+1)
« compiler treats pointer-to-int differently than int!
—even though both can be stored with 32 bits on IA-32 machine

Common mistake

« treat pointer arithmetic like direct calculations with addresses
- off by 4 when doing pointer arithmetic with integers

Pointer Arithmetic Example Program

Exam studying advice

* try writing simple test programs, use gdb and print to explore

tmm¥% cat array2.c
#include <stdio.h>
int main (int argc, char** argv) {

int a[4] = {100, 110, 120, 130};
int k = &a[4];

int m = &a[1];

int n = k-m;

int o = &a[4]-&a[1];
printf ("k hex: %x, k dec: %d, m hex: %x, m dec %d, n: %d, o: %d \n",k, k, m, m, n, 0);
¥

tmm% gcc -g -o array2 array2.c

array2.c: In function ‘main’:

array2.c:6: warning: initialization makes integer from pointer without a cast
array2.c:7: warning: initialization makes integer from pointer without a cast

tmmd% ./array2
k hex: bffff7d0, k dec: -1073743920, m hex: bffff7c4, m dec -1073743932, n: 12, o: 3

tmm% gdb array2

(gdb) p &a[4]

$1 = (int *) Oxbffff510
(gdb) p k

$2 = -1073744624

Determining Endianness of a Computer

#include <stdio.h>

int main () {
char a[4];

*(inth)a) = 1;

printf("a[0]=%d a[1]=%d a[2]=%d a[3]=%d\n",a[0],a[1],a[2],a[3]);
}

* how does this C code check for endianness?
create array of 4 bytes (char data type is 1 byte)
- cast whole thing to an integer, set it to 1
- check if the 1 appears in first byte or last byte
¢ things to understand:
concepts of endiananess
- casting between arrays of bytes and integers
- masking bits, shifting bits

Memory Management in C

Explicit allocation with malloc and deallocation with free
Dangling pointer problem

* pointer to object that has already been freed

* happens when allocate and free happen in different parts of code

e various strategies to avoid (reduce likelihood, but not a guaranteed cure)

use local variables (allocated on the stack) and pass in address of the local from caller, instead
of dynamic allocation in callee

- coding conventions

- explicit reference counting (heavyweight solution)
Memory leak problem

¢ allocated memory is not deallocated when no longer needed, so memory
usage steadily grows (problem especially for long-running programs)

Common mistake
* don’t free any memory to avoid dangling pointer problem

- result is memory leak, leads to later problems even though no immediate crash

Memory Management in Java

Garbage collection model
¢ allocation with new
» deallocation handled by Java system, not programmer
- thus some kinds of programmer errors are impossible, including dangling pointers
Advantages
*much easier to program

Polymorphic Dispatch

Method address is determined dynamically

* compiler can not hardcode target address in procedure call

* instead, compiler generates code to lookup procedure address at runtime
¢ address is stored in memory in the object’s class jump table

Class Jump table

 every class is represented by class object

Dynamic Jumps in C

Function pointer
¢ a variable that stores a pointer to a procedure
* declared
- <return-type> (*<variable-name>)(<formal-argument-list>);
¢ used to make dynamic call
- <variable-name> (<actual-argument-list>);

Indirect Jump: Base/Offset

Key observation
* base address stored in register (dynamic)

« for polymorphism jump table, offset can be computed statically by
compiler

Function pointers: use indirect base/offset jump instruction

Disadvantages « the class object stores the class’s jump table Example Name Semantics A bly | Machine
« some performance penalties * the jump table stores the address of every method implemented by the class L,— indir jump b+o __|pc + mirls] + (0==pp*2)] j *o(rs) dspp
- system knows less than programmer in best case * objects store a pointer to their class object void ping 0 {}
- GC pass could occur at bad time (realtime/interactive situation) Static and dynamic of method invocation -
* programmers tempted to ignore memory management completely * address of jump table is determined dynamically V?/gdf?fagl}nc) 0;
- GCis not perfect, memory leaks can still occur! » method’s offset into jump table is determined statically
aFunc = ping;
aFunc (); calls ping
o s o w0
Switch Statement Switch Statement Strategy Switch Snippet Indirect Jump: Indexed
inti; void bar 0 { . . foo: Id Si, r0 #10 = &i .
intj; 'fj(_'jg_m Choose one of two strategies to implement switch () { ld 0eoeOL 0 #r0-i Key observation
. - oo . case 20: j=10; break; x e r r::-_i f ; f
V?'ﬂff&%? e;sz I{{I; 1 * use jump table unless case labels are sparse or there are very few of them case 3% J:=E5 Ereatf ng :f,l |Bl ;grgm s |1f9|>19 . * base address stored in register (dynamic)
case 0+ J=10; break; else f (i==2) * use nested-if-statements otherwise Case 23 Jo13. break. o e oGPt defautifi<20 « for switch jump table, have index stored in register
case 1. J=_1; break 1= default: j=14; break; " add r0,r1 #rl=i-23 . L
case 2: j=12; break; else if (i==3) Jump-table strategy jreet e e bt rL default # goto default if 123 Switch: use indirect jump indexed instruction
gasfe 3|t j.=1[3‘, ll;reallz, f =13; Id SOxffffffec, rl #rl = -20
efault: j=14; break; else i dd r1, r0 #10 =i-20
} j=14; * statically 1d sjmptable, rl # 11 - &imptable | Name | Semantics [A bly [Machine |
} } - build jump table for all label values between lowest and highest j *(rl,r0,4) # goto jmptable[i-20] P - — - - -
« generate code o |mdlr/ump indexed ‘pc « mlr[s] + r[i]*4] J *(rs,ri,4) ‘es:—
SemanthS the same as Slmpllfled nGSted if statements - goto default if condition is less than minimum case label or greater than maximum casezosr I%O:e()xa, 1 # go#(gld:nio
* choosing one computation from a set - normalize condition to lowest case label Gefault Id SOxe, 1 #1114
e restricted syntax: static, cardinal values - use jump table to go directly to code selected case arm done: br done # goto done
one: Id $j, r0 #10 = &j
. . . .) 0 #j=rl1
Potential benefit: more efficient computation (usually) goto address of code_default if cond < min_label value b o oo cont

* jump table to select correct case with single operation
« if statement may have to execute each check
- number of operations is number of cases (if unlucky)

goto address of code_default if cond > max_label_value
goto jumptable[cond-min_label_value]

statically: jumptable[i-min_label_value] = address of code_i
forall i: min_label_value <= i <= max_label_value

jmptable: .long 0x00000140 # & (case 20)
Jlong 0x00000148 # & (case 21)
.long 0x00000150 # & (case 22)
.long 0x00000158 # & (case 23)

Static and Dynamic Jumps

Jump instructions

* specify a target address and a jump-taken condition

* target address can be static or dynamic

* jump-target condition can be static (unconditional) or dynamic (conditional)
Static jumps

* jump target address is static

* compiler hard-codes this address into instruction

Name i A
branch pc < (a==pc+00*2) bra 8-00
branch if equal |pc + (@==pc+00*2) if r[c]== beg a 9coo
branch if greater |pc + (a==pc+00*2) if r[c]>0 bgt a acoo
jlump pc + a (a specified as label) ja b---

Dynamic jumps
* jump target address is dynamic

Dynamic Jumps

Jump base+offset
* Jump target address stored in a register

* We already introduced this instruction, but used it for static procedure
calls

[Name [S
|indirect jump [pc_« rls] + (0==pp*2)

[. iy

‘j o(rs) ‘cspp ‘

Indirect jumps
* Jump target address stored in memory

* Base-plus-offset (function pointers) and indexed (switch) modes for
memory access

Name S, - A o R
indir jump b+o pc + mlr[s] + (o==pp*2)] j *o(rs) dspp
indir jump indexed pc < mlr[s] + r[i]*4] J *(rs,ri,4) esi-

Dynamic Control Flow Summary

Static vs dynamic flow control

* static if jump target is known by compiler

= dynamic for polymorphic dispatch, function pointers, and switch statements
Polymorphic dispatch in Java

* invoking a method on an object in Java

* method address depends on object’s type, which is not known statically

* object has pointer to class object; class object contains method jump table
* procedure call is an indirect jump - i.e., target address in memory
Function pointers in C

e a variable that stores the address of a procedure

* used to implement dynamic procedure call, similar to polymorphic dispatch
Switch statements

* syntax restricted so that they can be implemented with jump table

* jump-table implementation running time is independent of the number of case labels
* but, only works if case label values are reasonably dense

Big Ideas: Second Half

Memory hierarchy
* progression from small/fast to large/slow

- registers (same speed as ALU instruction execution, roughly: 1 ns clock tick)
- memory (over 100x slower: 100ns)
- disk (over 1,000,000x slower: 10 millisec)
- network (even worse: 200+ millisec RT to other side of world just from speed of light in fiber)
e implications
- don’t make ALU wait for memory
- ALU input only from registers, not memory

- don’t make CPU wait for disk

« interrupts, threads, asynchrony

Clean abstraction for programmer

*ignore asynchronous reality via threads and virtual memory (mostly)
* explicit synchronization as needed

Adding 1/0O to Simple Machine

Beyond CPU/memory
¢ CPU: ALU and registers

—
#

Memory

I/0 devices have small processors: I/0O controllers
* processing power available outside CPU

Memory Bus
CPU

‘The - .
P‘rocessors i‘i)
N

Memory

1/0O Bus
i ‘ 1/0 Controllers
i i i 1/0O Devices

I/O-Mapped Memory

read 0x100
ceon addresses

0x00000000-
OX7FFFFFFF

B3boooooo |

1/0-Mapped Memory
« use familiar syntax for load/store for both memory and 1/0
* memory addresses beyond the end of main memory handled by I/0 controllers
- mapping configured at boot time
* loads and stores are translated into I/O-bus messages to controller
Example
* to read/write to controller at address 0x80000000
Id $0x80000000, r0

st rl (r0) # write the value of rl to the device
Id (r0), r1 # read a word from device into rl

Programmed 1O (P1O)

PIO:
data transfer:
CPU sends requests to
controller and waits
until data is ready

CPU requests one word at a time and waits for /O controller
* CPU must wait until data is available
- but I/O devices may be much slower than CPU (disks millions of times slower)
* large transfers slow since must be done one word at a time
* CPU must check back with I/O controller (for instance by polling)
- poll too often means high overhead
- poll too seldom means high latency

* no way for I/O controller to initiate communication

- for some devices CPU has no idea when to poll (network traffic, mouse click)

Interrupts

CPU Interrupts

« controller can signal the CPU by setting special-purpose registers
- isDevicelnterrupting set by I/0 Controller to signal interrupt
- interruptControllerlD set by I/0 Controller to identify interrupting device
* CPU checks for interrupts on every fetch-execute cycle
- polling, but very low overhead of register access: does not slow down computation
* CPU jumps to controller’s Interrupt Service Routine to service interrupt

- interruptVectorBase interrupt-handler jump table, initialized at boot time

while (true) {
if (isDevicelnterrupting) {
mir[5]-4] « r[6];
r[5] « r[5]-4;
r6] < pg
pc « interruptVectorBase [interruptControllerID];

}
fetch ();
execute ();

Direct Memory Access (DMA)

PIO vs DMA: Phone Call Analogy

Asynchronous Disk Reading

Cannot depend on synchronized execution where result is

Threads

Abstraction for execution

foo
1: PIO 1: PIO available before next statement executed * programmer’s view ¢ J
data transfer data transfer B . - statements are executed one after another, appearance of sequential flow
CPU -> Controller 2: DMA CPU -> Controller 2: DMA read (buf, siz, bI_kN_o), .
initiated by CPU data transfer initiated by CPU data transfer nowHaveBlock (buf, siz); * system reality bar zot
Py §9ntr0!et; <C-> Melrlnory Ny €9ntroget; <C-> Melr;wrv . . - threads maybe be blocked (stopped) ¢
c’ontrol [rar?sfer S by haet c’ontrol trar?sfer Uinted by Contaler Handllng dlSk readS aSynChl’OHOUSW - often thread is not running because CPU is running a different thread
ﬁ']li)tr;;(e)get;yizocnl:?oller ﬁ]‘i’t';;‘e’gegy’aiffo“er « each request has completion routine that should run after interrupt - blocked threads can be restarted join
. Using threads
I/0 controller transfers data to/from main memory PIO: onIy CPU can make a phone call asyncRead (buf, siz, blkNo, nowHaveBlock); . crea?e
independently of CPU)) " - N) "
e . * must stay on the line a looooong time waiting for controller to finish * need queue so can handle multiple pending requests - starts new thread, immediately adds it to queue of threads waiting to run
* process initiated by CPU using PIO PIO/DMAVI bi X f oh I Chall ¢ h « join ¢
- send request to controller with addresses and sizes nterrUpt com Inatlon- Sequence (o) p one calls -a enges o async I'Oﬂy N . - blocks calling thread until target thread completes bat
* data transferred to memory without CPU involvement *PIO: CPU calls controller to make request, then hangs up * either programmers must use explicitly asynchronous programming model « common mistakes:
« controller signals CPU with interrupt when transfer complete * DMA: controller calls memory to deliver data * decoupled event triggering and handiing as with event-diiven GUI programming - assume that order of joining is order of execution
. . . - imagine if not just on mouse clicks, but for every memory access! - assume that order of creating is order of execution
can transfer Iarge amounts of data with one request * Interrupt: controller calls CPU to inform that data is ready * or system can provide abstractions to hide asynchrony from programmers - thread joins runnable queue with create call, not with join call
» not limited to one word at a time - leaves voicemail that CPU picks up on the next fetch/execute cycle - threads, processes, virtual memory scheduler may choose what to run next in any order
Thread Status DFA Implementing Threads Thread Private Data Thread Scheduling Policies
Cr,
Q, Schedule Ready Queue Stacks .
e - Each thread has own copy of stack Y Th re;lc:) cCI:)s ntrol Priority
Thread-Control Block (TCB) P / 5 * choose highest priority runnable thread to run
vield o—— € _ .
R . Running « thread status: (NASCENT, RUNNING, RUNNABLE, BLOCKED, or DEAD) - T'SJB;NNG Round-Robin
* pointers to base of thread’s stack base and top of thread’s stack * equal-priority threads get fair share of processor, in round-robin fashion
* scheduling parameters such as priority, quantum, pre-emptability, etc.) Preemptive
g’ 9 Queues TCB must have pointer to TCED < « priority-based
Runnable 2. 3 « ready: list of TCB’s of all RUNNABLE threads stack)) i RUNNABLE /—) - lower priority thread preempted as soon as higher priority becomes runnable
© otherwise no way to find thread's data [l Sm— " b d (i i)
i) . o ntum-| ime sli
g;_ * blocked: list of TCB’s of BLOCKED threads Stack must have pointer to ql::l :1 aS:Bd ! e‘tst-ces t ‘
Blocked Thread switch (stops Ta and starts Tb) TCB —0 jreac preemp s when Ts ime aantmexpres .
Unb/OCk otherwise no way to add currently TCBcC - timer device: I/0 controller connected to clock, sends interrupts to CPU at regular intervals
e e e e ruing ead f eady queve, wrich ruNasLe | > Can be combined
* save stack pointer to Ta’s o
* set stack pointer to stack pointer in Tv’s TCB Common mistake:
Freed Dead P P

Join or Detach

e restore registers from stack

Top of stack points to TCB
where Thread-private data is

forgetting that stack must point back
to TCB

stored

Mutual Exclusion

Use mutual exclusion to guard critical sections where data
shared between multiple threads is accessed
« avoid race conditions where conflicting operations on shared data are
interleaved arbitrarily leading to nondeterministic behavior
- example: stack corruption when push and pop interleaved without being guarded
Mutual exclusion with locks
* spinlock
- thread busy-waits until lock acquired
- use when locks only needed for short time
* blocking locks
- thread blocks if lock not available
- thread returned to runnable state when lock becomes available

- use when locks may be held for long periods

Mutual Exclusion Using Locks

lock semantics

*alock is either held by a thread or available

* at most one thread can hold a lock at a time

* a thread attempting to acquire a lock that is already held is forced to wait
lock primitives

*lock acquire lock, wait if necessary

cunlock release lock, allowing another thread to acquire if waiting
using locks for the shared stack

void push_cs (struct SE* e) {
lock (&aLock);

struct SE* pop_cs () {
struct SE* e;

push_st (e); lock (&aLock);
unlock (&aLock); e = pop_st (;
} unlock (&aLock);
return e;

Spinlocks Require Atomic Read/Write

Impossible when read and write are separate operations

void lock (int* lock) { Another thread could run in
while (*lock==1) {} between read and write

*lock = 1; (—-————-————

Need atomic read and write that is single indivisible unit

« with no intervening access to that memory location from any other thread allowed
Atomic Memory Exchange

* one type of atomic memory instruction (there are other types)

© group a load and store together atomically

* exchanging the value of a register and a memory location

* much higher overhead than standard load or store

Implementing Spinlocks

Spin first on fast normal read, then try slow atomic exchange
¢ use normal read in loop until lock appears free

*when lock appears free use exchange to try to grab it

¢ if exchange fails then go back to normal read

Id $lock, %rl
loop: Id (%r1), %r0
beq %r0, try
br_loop
try: Id $1, %r0
xchg (%r1), %r0
\ beg %r0, held
br loop
held:

Semantics

rivl « mlrfa]]
mir[a]] « r[v]

Name
atomic exchange

Assembly
xchg (ra), rv

° common mistake:

- assume that atomic exchange always succeeds; could fail!

Blocking Locks

If a thread may wait a long time
« it should block so that other threads can run

« it will then unblock when it becomes runnable (lock available or event
notification)

Blocking locks for mutual exclusion

Implementing a Blocking Lock

void lock (struct blocking_lock I) {
spinlock_lock (&I->spinlock);
while (I->held) {
enqueue (&waiter_queue, uthread_self ());
spinlock_unlock (&I->spinlock);
uthread_switch (ready_queue_dequeue (), TS_BLOCKED);

Blocking Lock Example Scenario

Thread A Thread B
calls lock()
grabs spinlock 3. calls lock()

grabs blocking lock 4. tries to grab spinlock, but spins
releases spinlock

. returns from lock()

Po—
NpPN -

8. grabs spinlock
9. queues itself on waiter list

Busywaiting vs Blocking

Using spinlocks to
busywait for long time
wastes CPU cycles

e use for short things

Busywait Locks Blocking Locks
B A B

l B does work l B does work

spinlock_lock (&I->spinlock); 10. releases spinlock - including within implementation of i A blocks
11. blocks . p
«if lock is held, locker puts itself on waiter queue and blocks I}—>held -1 blocking locks § Abusywaits l 5 doss work
= when lock is unlocked, unlocker restarts one thread on waiter queue spinlock_unlock (&I->spinlock); Using blocking locks
. = i . . 12. calls unlock() h h h h d B does work l B does work
Blocking locks for event notification (condition variables) 13, grabs spinlock as high overhea
o waiti ; ; void unlock (struct blocking_lock I) { struct blocking_lock { 14. releases lock » use for long things Ab i
wa|.t|n.g thread puts itself on a a waiter que.ue and blocks uthread t+ waiter thread: spinlock t spinlock: 12 relstms Threz:d i ¢} [¢] 5 usywaits } A doss work
* notifying thread restarts one thread on waiter queue (or perhaps all) int held; by e Common mistake
.)) . spinlock_lock (&1->spinlock); uthread_queue_t waiter_queue; « (MRS Sam s B does work
Implementing blocking locks using spinlocks I->held = 0; : o s » assume that CPU is A does work
. .) waiter_thread = dequeue (&|->waiter_queue); - 19. grabs spinlock busywaiting during blockin
* lock data structure includes a waiter queue and a few other things spinlock_unlock (&->spinlock):; Spinlock guard ! 20, grabs e Y . Iockys 9 9 9 l A doss work
* data structure is shared by multiple threads; lock operations are critical sections waiter_thread->state = TS_RUNNABLE; son f itical secti 21. releases spinlock mas thread running
. . i . K . ready_queue_enqueue (waiter_thread); onTor critical sections 22. returns from lock() wwss spinlock held thread does not run again until
 thus we use spinlocks to guard these sections in blocking lock implementation « off before thread blocks v blocking lock held after blocking lock is released A does work
o s o s
Locks and Loops Common Mistakes Synchronization Abstractions Spin/Block,Lock/Notify: 3YrOld Analogy | Monitors

Confusion about spinlocks inside blocking locks
* use spinlocks in the implementation of blocking locks
* two separate levels of lock!
- holding spinlock guarding variable read/write
- holding actual blocking lock
Confusion about when spinlocks needed
* must turn on to guard access to shared variables
* must turn off before finishing or blocking

Confusion about loop function
* busywait
- only inside spinlock
* thread blocked inside loop body, not busywaiting
- yield for blocking lock
« re-check for desired condition: is lock available?

- blocking wait for CV, blocking wait for semaphore P implementation

« re-check for desired condition

Monitors and condition variables
* monitor provides blocking locks

guarantees mutual exclusion
 condition variable provides blocking notify
control transfer among threads with wait/notify
* abstraction supports explicit locking
Semaphores
* blocking atomic counter, stop thread if counter would go negative
* introduced to coordinate asynchronous resource use
* abstraction implicitly supports mutex, no need for explicit locking by user
 could use to implement monitors, barriers (and CVs, sort of)
Common mistake:

* confusing three things
- how to use, how to implement, how one abstraction might be used to implement the other

Common mistake: confusing lock and notify
* lock: resource only available for single user at once
* notify: event has occurred
Common mistake: confusing spin and block
* spin: actively use CPU resources while waiting
* block: do not use any CPU resources while waiting, use scheduler blocking mechanism
checking the lock: try washroom door handle to see if it opens
* spinlock: keep rattling the door handle and knocking until the door opens
- like a three year old child
* blocking lock: knock once, step away from the door to wait quietly, walk towards door|
after it opens. (and somebody else might beat you there, so do check door again!)
checking for notification: asking 'are we there yet' on a car trip
* spinnotify: keep asking 'are we there yet' every 30 seconds, for 1000km
- like a three year old child

* blocking notify: after first question, driver says 'no, go to sleep, I'll wake you up when
we get there'.

Provides mutual exclusion with blocking lock
*enter lock

° exit unlock

void doSomething (uthread_monitor_t* mon) {
uthread_monitor_enter (mon);
touchSharedMemory();
uthread_monitor_exit (mon);

}

Standard case: assume all threads could overwrite shared
memory.

* mutex: only allows access one at a time

Special case: distinguish read-only access (readers) from
threads that change shared memory values (writers).

* mutex: allow multiple readers but only one writer

Condition Variables

Mechanism to transfer control back and forth between
threads

* uses monitors: CV can only be accessed when monitor lock is held
Primitives
° wait

* notify

* notify_all unblocks all waiters (broadcast), continues to hold monitor
Each CV associated with a monitor

Multiple CVs can be associated with same monitor

* independent conditions, but guarded by same mutex lock

blocks until a subsequent notify operation on the variable
unblocks one waiter, continues to hold monitor

uthread_monitor_t* beer = uthread_monitor_create ();

uthread_cv_t* not_empty = uthread_cv_create (beer);
uthread_cv_t* warm = uthread_cv_create (beer);

Wait and Notify Semantics

Monitor automatically exited before block on wait
* before waiter blocks, it exits monitor to allow other threads to enter
Monitor automatically re-entered before return from wait

* when trying to return from wait after notify, thread may block again until
monitor can be entered (if monitor lock held by another thread)

Monitor stays locked after notify: does not block
Implication: cannot assume desired condition holds after
return from blocking wait

e other threads may have been in monitor between wait call and return
- must explicitly re-check: usually enclose wait in while loop with condition check
- same idea as blocking lock implementation with spinlocks!

void pour () { void refill (int n) {

monitor { monitor {
while (glasses==0) for (int i=0; i<n; i++) {
wait; glasses++;
glasses—-; notify;

B W

Condition Variables

Common mistakes:

* CVs do not have internal storage variables (boolean flags or int counters)
- CVs are variables: named so can tell them apart from each other
- wait/notify tired vs. wait/notify hungry

e users of CVs do not have to explicitly block
- wait/notify done within implementation of CVs

e users of CVs do have to hold monitor in order to access CV values

Semaphores

Atomic counter that can never be less than 0

* attempting to make counter negative blocks calling thread

P(s): acquire

e try to decrement s

« if s would be negative, atomically blocks until s positive, then decrement s
V(s): release

eincrement s

e atomically unblock any threads waiting in P

Explicit locking not required when using semaphores since
atomicity built in

uthread_semaphore_t* glasses = uthread_create_semaphore (0);

void pour () { void refill (int n) {
uthread_P (glasses); for (int i=0; i<n; i++)
} uthread_V (glasses);
}

Semaphores

Using semaphores: good building block for implementing
many other things

* monitors

» condition variables (almost)

*rendezvous: two threads wait for each other before continuing

e barriers: all threads must arrive at barrier before any can continue

Implementing semaphores: similar spirit to blocking locks

struct uthread_semaphore {
spinlock_t spinlock;
int count; int held;
uthread_queue_t waiter_queue; uthread_queue_t waiter_queue;
b k

struct blocking_lock {
spinlock_t spinlock;

(really should be boolean...)

Deadlock and Starvation

Solved problem: race conditions
* solved by synchronization abstractions: locks, monitors, semaphores
Unsolved problems when using multiple locks

 deadlock: nothing completes because multiple competing actions wait for
each other

e starvation: some actions never complete

*no abstraction to simply solve problem, major concern intrinsic to
synchronization

* some ways to handle/avoid:
- precedence hierarchy of locks

- detect and destroy: notice deadlock and terminate threads

Virtual Memory

Virtual Address Space
* an abstraction of the physical address space of main (i.e., physical) memory
° programs access memory using virtual addresses

* memory management unit translates virtual address to physical memory
addresses

- MMU hardware performs translation on every memory access by program
Process
* a program execution with a private virtual address space

-may have one or many threads
* private address space required for static address allocation and isolation

Virtual Address Translation

each program uses the same virtual address, but they map
to different physical addresses

Id $0x1000, r2 Id $0x1000, r4

Id $3,r3 Id $42, r5
str3, (r2) str5, (r4)
VA: 0x1000 VA: 0x1000

PA:f0x5000 | PA:0x9000]

Address Space Translation Tradeoffs

Single, variable-size, non-expandable segment

e internal fragmentation of segment due to sparse address use

Multiple, variable-size, non-expandable segments

« internal fragmentation of segments when size isn’t know statically
 external fragmentation of memory because segments are variable size
*moving segments would resolve fragmentation, but moving is costly
Expandable segments

* expansion must by physically contiguous, but there may not be room
 external fragmentation of memory requires moving segments to make room
Multiple, fixed-size, non-expandable segments

¢ called pages

* need to be small to avoid internal fragmentation, so there are many of them
e since there are many, need indexed lookup instead of search

Paging

Key idea

* Virtual address space is divided into set of fixed-size segments called pages
* number pages in virtual address order

* virtual page number = virtual address / page size

Page table

* indexed by virtual page number (vpn)

* stores base physical address (actually address / page size (pfn) to save space)

* stores valid flag

virtual address space physical address space

_——

Translation: Search vs. Lookup Table

Translate by searching through all segments: too slow!

for (int i=0; i<segments.length; i++) {
int offset = va - segment[i].baseVA;
if (offset > 0 && offset < segment[i].bounds) {
pa = segment[i].basePA + offset;
return pa;

throw new lllegalAddressException (va);

Translate with indexed lookup: Page Table

class AddressSpace {

class PageTableEntry {
PageTableEntry pte[];

boolean isValid;
int pfn;
int translate (int va) { }
intvpn = va / PAGE_SIZE;
int offset = va % PAGE_SIZE;
if (pte[vpn].isValid)
return pte[vpn].pfn * PAGE_SIZE + offset;
else
throw new lllegalAddressException (va);

Address Translation
The bit-shifty version

* assume that page size is 4-KB = 4096 = 22

* assume addresses are 32 bits

= then, vpn and pfn are 20 bits and offset is 12 bits

* pte is pfn plus valid bit, so 21 bits or so, say 4 bytes

int translate (int va) {
intvpn =va>>> 12;
int offset = va & Oxfff;
if (pte[vpn].isValid)

31 va: 32 bit address 0
T T T
L_vpn ,, offset
20 bits (5 hexits) 12 bits
(8 hexits)

Page Table

Page (4KB)
(~4MB for 220 ptes)

return pte[vpn].pfn << 12 | offset;

]

pte[vpn] = pfn ba

Demand Paging

a.out

Key Idea

* some application data is not in memory

[owap || |, , ,

« transfer from disk to memory, only when needed
Page Table

« only stores entries for pages that are in memory

* pages that are only on disk are marked invalid

* access to non-resident page causes a page-fault interrupt

Page Fault

* is an exception raised by the CPU

* when a virtual address is invalid

* an exception is just like an interrupt, but generated by CPU not |0 device
* page fault handler runs each time a page fault occurs

Memory Map

* a second data structure managed by the OS

« divides virtual address space into regions, each mapped to a file
 page-fault interrupt handler checks to see if faulted page is mapped

« if so, gets page from disk, update Page Table and restart faulted instruction

Demand Paging

a.out

[swap |

Virtual vs Physical Memory Size

*VM can be even larger than available
PM with demand paging!

| swap |

Page Replacement —
® pages can now be removed from |
memory, transparent to program —

* a replacement algorithm choose which
pages should be resident and swaps out
others

Context Switch

A context switch is
*switching between threads from different processes

- each process has private virtual address space and thus its own page
table

Implementing a context switch

» change PTBR to point to new process's page table

* thread switch (save regs, switch stacks, restore regs)

Context switch vs thread switch

* changing page tables can be considerably slower than just changing threads
-mainly because caching techniques used to make translation fast
- many pages may need reloading from disk because of demand paging

Paging Summary

Paging

*a way to implement address space translation

e divide virtual address space into small, fixed sized virtual page frames
° page table stores base physical address of every virtual page frame

* page table is indexed by virtual page frame number

= some virtual page frames have no physical page mapping

*some of these get data on demand from disk

Summary: Second Half

Single System Image

* hardware implements a set of instructions needed by compilers
* compilers translate programs into these instructions

e translation assumes private memory and processor

Threads

* an abstraction implemented by software to manage asynchrony and
concurrency

* provides the illusion of single processor to applications

« differs from processor in that it can be stopped and restarted
Virtual Memory

e an abstraction implemented by software and hardware

* provides the illusion of a single, private memory to application
*not all data need be in memory, paged in on demand

