
CPSC 213
Introduction to Computer Systems

Unit 1f

C, Pointers, and Dynamic Allocation

1



Reading

‣Textbook
• New to C, Understanding Pointers, The malloc and free Functions, Why 

Dynamic Memory Allocation

• 2ed:  "New to C" sidebar of 3.4, 3.10, 9.9.1-9.9.2 

• 1ed:  "New to C" sidebar of 3.4, 3.11,10.9.1-10.9.2

2



C vs. Java

3



import java.io.*;

public class HelloWorld {

  public static void main (String[] args) {

    System.out.println("Hello world");

 }

}

Java Hello World...   

#include <stdio.h>

main() {

    printf("Hello world\n");

}

C Hello World...   

4



‣ source files
• .c	 is source file

• .h	 is header file

‣ including headers in source
• #include <stdio.h>

‣ printing
• printf("blah blah\n");  

‣ compile and run
• gcc -g -o foo foo.c    
• ./foo
• at Unix command line shell prompt

(Linux, Mac Terminal, Sparc,
Cygwin on Windows)

‣ debug
• gdb foo

Java Syntax...             vs. C Syntax

‣ source files
• .java is source file

‣ including packages in source
• import java.io.*

‣ printing
• System.out.println("blah blah");

‣ compile and run 
• javac foo.java
• java foo
• at command line (Linux, Windows, Mac)

‣ edit, compile, run, debug (IDE)
• Eclipse

5



Pointers in C

6



‣pointers: addresses in memory
• locations are first-class citizens in C

• can go back and forth between location and value!

‣pointer declaration: <type>*
• int* b;                // b is a POINTER to an INT

‣getting address of object: &
• int  a;                 // a is an INT
• int* b = &a;        // b is a pointer to a

‣de-referencing pointer: *
• a  = 10;              // assign the value 10 to a
• *b = 10;             // assign the value 10 to a

‣ type casting is not typesafe	
• char a[4];            // a 4 byte array
• *((int*) a) = 1;     // treat those four bytes as an INT

New in C: Pointers

0x00000000

0x00000001

0x00000002

0x00000003

0x00000004

0x00000005

0x00000006

0x3e47ad40

0x3e47ad41

0x3e47ad42

0xffffffff

.

.

.

.

.

.

7



C and Java Arrays and Pointers

‣ In both languages
• an array is a list of items of the same type

• array elements are named by non-negative integers start with 0

• syntax for accessing element i of array b is b[i]
‣ In Java

• variable a stores a pointer to the array

• b[x] = 0 
 means   m[m[b] + x * sizeof(array-element)] ← 0

‣ In C
• variable a can store a pointer to the array or the array itself

• b[x] = 0 
 means
m[b + x * sizeof(array-element)] ← 0

 
 
 or
 
 m[m[b] + x * sizeof(array-element)] ← 0

• dynamic arrays are just like all other pointers
- stored in TYPE*

- access with either a[x] or *(a+x)

8



Example

‣The following two C programs are identical

‣For array access, the compiler would generate this code

• multiplying the index 4 by 4 (size of integer) to compute the array offset

‣So, what does this tell you about pointer arithmetic in C?

int *a;
*(a+4) = 5;

int *a;
a[4] = 5;

r[0]           ← a
r[1]           ← 4
r[2]           ← 5
m[r[0]+4*r[1]] ← r[2]

ld $a, r0
ld $4, r1
ld $5, r2
st r2, (r0,r1,4)

9



Example

‣The following two C programs are identical

‣For array access, the compiler would generate this code

• multiplying the index 4 by 4 (size of integer) to compute the array offset

‣So, what does this tell you about pointer arithmetic in C?

int *a;
*(a+4) = 5;

int *a;
a[4] = 5;

r[0]           ← a
r[1]           ← 4
r[2]           ← 5
m[r[0]+4*r[1]] ← r[2]

ld $a, r0
ld $4, r1
ld $5, r2
st r2, (r0,r1,4)

Adding X to a pointer of type Y*, adds X * sizeof(Y)
to the pointer’s memory-address value.

9



Pointer Arithmetic in C

‣ Its purpose
• an alternative way to access dynamic arrays to the a[i]

‣ Adding or subtracting an integer index to a pointer
• results in a new pointer of the same type

• value of the pointer is offset by index times size of pointer’s referent

• for example
- adding 3 to an int* yields a pointer value 12 larger than the original

‣ Subtracting two pointers of the same type
• results in an integer

• gives number of referent-type elements between the two pointers

• for example
- (& a[7]) - (& a[2])) == 5 == (a+7) - (a+2)

‣ other operators
• & X		 the address of X

• * X	 	 the value X points to 

10



Question (from S3-C-pointer-math.c)

‣What is the equivalent Java statement to
• [A] c[0] = c[3];

• [B] c[3] = c[6];

• [C] there is no typesafe equivalent

• [D] not valid, because you can’t take the address of a static in Java

int *c;

void foo () {
  // ...
  c = (int *) malloc (10*sizeof(int));
  // ...
  c = &c[3];
  *c = *&c[3];
  // ...
}

11



Looking more closely

c = &c[3];
*c = *&c[3];

r[0]    ← 0x2000         # r[0] = &c
r[1]    ← m[r[0]]        # r[1] = c
r[2]    ← 12             # r[2] = 3 * sizeof(int)
r[2]    ← r[2]+r[1]      # r[2] = c + 3
m[r[0]] ← r[2]           # c    = c + 3

r[3]    ← 3              # r[3] = 3
r[4]    ← m[r[2]+4*r[3]] # r[4] = c[3]
m[r[2]] ← r[4]           # c[0] = c[3]

0x2000: 0x3000 0x3000: 0
0x3004: 1
0x3008: 2
0x300c: 3
0x3010: 4
0x3014: 5
0x3018: 6
0x301c: 7
0x3020: 8

Before

12



Looking more closely

c = &c[3];
*c = *&c[3];

r[0]    ← 0x2000         # r[0] = &c
r[1]    ← m[r[0]]        # r[1] = c
r[2]    ← 12             # r[2] = 3 * sizeof(int)
r[2]    ← r[2]+r[1]      # r[2] = c + 3
m[r[0]] ← r[2]           # c    = c + 3

r[3]    ← 3              # r[3] = 3
r[4]    ← m[r[2]+4*r[3]] # r[4] = c[3]
m[r[2]] ← r[4]           # c[0] = c[3]

0x2000: 0x3000 0x3000: 0
0x3004: 1
0x3008: 2
0x300c: 3
0x3010: 4
0x3014: 5
0x3018: 6
0x301c: 7
0x3020: 8

Before

0x2000: 0x300c 0x3000: 0
0x3004: 1
0x3008: 2
0x300c: 6
0x3010: 4
0x3014: 5
0x3018: 6
0x301c: 7
0x3020: 8

After

c[0] = c[3]

12



‣And in assembly language

r[0]    ← 0x2000         # r[0] = &c
r[1]    ← m[r[0]]        # r[1] = c
r[2]    ← 12             # r[2] = 3 * sizeof(int)
r[2]    ← r[2]+r[1]      # r[2] = c + 3
m[r[0]] ← r[2]           # c    = c + 3

r[3]    ← 3              # r[3] = 3
r[4]    ← m[r[2]+4*r[3]] # r[4] = c[3]
m[r[2]] ← r[4]           # c[0] = c[3]

ld $0x2000, r0            # r0 = &c
ld (r0), r1               # r1 = c
ld $12, r2                # r2 = 3*sizeof(int)
add r1, r2                # r2 = c+3
st r2, (r0)               # c  = c+3

ld $3, r3                 # r3   = 3
ld (r2,r3,4), r4          # r4   = c[3]
st r4, (r2)               # c[0] = c[3]

13



Example: Endianness of a Computer

#include <stdio.h>

int main () {
  char a[4];
  
  *((int*)a) = 1;
  
  printf("a[0]=%d a[1]=%d a[2]=%d a[3]=%d\n",a[0],a[1],a[2],a[3]);
}

14



Dynamic Allocation

15



Dynamic Allocation in C and Java

‣Programs can allocate memory dynamically
• allocation reserves a range of memory for a purpose

• in Java, instances of classes are allocated by the new statement

• in C, byte ranges are allocated by call to malloc function

‣Wise management of memory requires deallocation 
• memory is a scare resource

• deallocation frees previously allocated memory for later re-use

• Java and C take different approaches to deallocation

‣How is memory deallocated in Java?

‣Deallocation in C
• programs must explicitly deallocate memory by calling the free function

• free frees the memory immediately, with no check to see if its still in use

16



Considering Explicit Delete

‣Let's look at this example

• is it safe to free mb where it is freed?

• what bad thing can happen?

struct MBuf * receive () {
  struct MBuf* mBuf = (struct MBuf*) malloc (sizeof (struct MBuf));
  ...
  return mBuf;
}

void foo () {
  struct MBuf* mb = receive ();
  bar (mb);
  free (mb);
}

17



‣Let's extend the example to see
• what might happen in bar()

• and why a subsequent call to bat() would expose a serious bug

struct MBuf * receive () {
  struct MBuf* mBuf = (struct MBuf*) malloc (sizeof (struct MBuf));
  ...
  return mBuf;
}

void foo () {
  struct MBuf* mb = receive ();
  bar (mb);
  free (mb);
}

void MBuf* aMB;

void bar (MBuf* mb) {
  aMB = mb;
}

void bat () {
  aMB->x = 0;
}

This statement writes to
unallocated (or re-allocated) memory.

18



‣A dangling pointer is 
• a pointer to an object that has been freed

• could point to unallocated memory or to another object

‣Why they are a problem
• program thinks its writing to object of type X, but isn’t

• it may be writing to an object of type Y, consider this sequence of events

Dangling Pointers

0x2000: a struct mbuf

aMB: 0x2000

(1) Before free:

0x2000: free memory

aMB: 0x2000

(2) After free:

0x2000: another thing

aMB: 0x2000

(3) After another malloc:

dangling 
pointer

dangling pointer that is 
really dangerous

19



Avoiding Dangling Pointers in C

‣Understand the problem
• when allocation and free appear in different places in your code

• for example, when a procedure returns a pointer to something it allocates

‣Avoid the problem cases, if possible
• restrict dynamic allocation/free to single procedure, if possible

• don’t write procedures that return pointers, if possible

• use local variables instead, where possible
- since local variables are automatically allocated on call and freed on return through stack

‣Engineer for memory management, if necessary
• define rules for which procedure is responsible for deallocation, if possible

• implement explicit reference counting if multiple potential deallocators

• define rules for which pointers can be stored in data structures

• use coding conventions and documentation to ensure rules are followed

20



‣ If procedure returns value of dynamically allocated object
• allocate that object in caller and pass pointer to it to callee

• good if caller can allocate on stack or can do both malloc / free itself

struct MBuf * receive () {
  struct MBuf* mBuf = (struct MBuf*) malloc (sizeof (struct MBuf));
  ...
  return mBuf;
}

void foo () {
  struct MBuf* mb = receive ();
  bar (mb);
  free (mb);
}

Avoiding dynamic allocation

void receive (struct MBuf* mBuf) {
  ...
}

void foo () {
  struct MBuf mb;
  receive (&mb);
  bar (mb);
}

21



Reference Counting

‣Use reference counting to track object use
• any procedure that stores a reference increments the count

• any procedure that discards a reference decrements the count

• the object is freed when count goes to zero

struct MBuf* malloc_Mbuf () {
  struct MBuf* mb = (struct MBuf* mb) malloc (sizeof (struct MBuf));
  mb->ref_count = 1;
  return mb;
}

void keep_reference (struct MBuf* mb) {
  mb->ref_count ++;
}

void free_reference (struct MBuf* mb) {
  mb->ref_count --;
  if (mb->ref_count==0)
    free (mb);
}

22



‣The example code then uses reference counting like this

struct MBuf * receive () {
  struct MBuf* mBuf = malloc_Mbuf ();
  ...
  return mBuf;
}

void foo () {
  struct MBuf* mb = receive ();
  bar (mb);
  free_reference (mb);
}

void MBuf* aMB = 0;

void bar (MBuf* mb) {
  if (aMB != 0)
    free_reference (aMB);
  aMB = mb;
  keep_reference (aMB);
}

23



Garbage Collection

‣ In Java objects are deallocated implicitly
• the program never says free

• the runtime system tracks every object reference

• when an object is unreachable then it can be deallocated

• a garbage collector runs periodically to deallocate unreachable objects

‣Advantage compared to explicit delete
• no dangling pointers

MBuf receive () {
  MBuf mBuf = new MBuf ();
  ...
  return mBuf;
}

void foo () {
  MBuf mb = receive ();
  bar (mb);
}

24



‣What are the advantages of C’s explicit delete

‣What are the advantages of Java’s garbage collection

‣ Is it okay to ignore deallocation in Java programs?

Discussion

25



‣Memory leak
• occurs when the garbage collector fails to reclaim unneeded objects

• memory is a scarce resource and wasting it can be a serous bug

• its huge problem for long-running programs where the garbage accumulates

‣How is it possible to create a memory leak in Java?
• Java can only reclaim an object if it is unreachable

• but, unreachability is only an approximation of whether an object is needed

• an unneeded object in a hash table, for example, is never reclaimed

‣ The solution requires engineering
• just as in C, you must plan for memory deallocation explicitly

• unlike C, however, if you make a mistake, you can not create a dangling pointer

• in Java you remove the references, Java reclaims the objects

‣ Further reading
• http://java.sun.com/docs/books/performance/1st_edition/html/JPAppGC.fm.html

Memory Management in Java

26

http://java.sun.com/docs/books/performance/1st_edition/html/JPAppGC.fm.html
http://java.sun.com/docs/books/performance/1st_edition/html/JPAppGC.fm.html

