Reading

Textbook

New to C, Understanding Pointers, The malloc and free Functions, Why
Dynamic Memory Allocation

2ed: "New to C" sidebar of 3.4, 3.10, 9.9.1-9.9.2
1ed: "New to C" sidebar of 3.4, 3.11,10.9.1-10.9.2

Introduction to Computer Systems

Unit 1f
C, Pointers, and Dynamic Allocation

Java Hello World...

import java.io.¥;
public class HelloWorld {
public static void main (String[] args) {
System.out.println("Hello world");
}
}

C vs. Java C Hello World...

#include <stdio.h>

main() {
printf("Hello world\n");

}

Java Syntax...

source files

.java is source file

including packages in source
import java.io.*

printing
System.out.printin("blah blah");

compile and run

javac foo.java
java foo
at command line (Linux, Windows, Mac)

edit, compile, run, debug (IDE)

Eclipse

vs. C Syntax

source files
.Cc is source file
.h is header file

including headers in source
#include <stdio.h>

printing
printf("blah blah\n");

compile and run

gcc -g -o foo foo.c
./foo

at Unix command line shell prompt
(Linux, Mac Terminal, Sparc,
Cygwin on Windows)

debug

gdb foo

Pointers in C

New in C: Pointers

pointers: addresses in memory

locations are first-class citizens in C

can go back and forth between location and value!

pointer declaration: <type>*

int* b; // b is a POINTER to an INT
getting address of object: &

int a; // ais an INT

int* b = &a; // b is a pointer to a
de-referencing pointer: *

a = 10; // assign the value 10 to a

*h = 10; // assign the value 10 to a

type casting is not typesafe

char a[4];
((int) a) = 1;

// a 4 byte array

/| treat those four bytes as an INT

0x00000000

0x00000001

0x00000002

0x00000003

0x00000004

0x00000005

0x00000006

0Ox3e47ad40

Ox3e47ad41

Ox3e47ad42

OXFFFFFFFf

C and Java Arrays and Pointers

In both languages
an array is a list of items of the same type
array elements are named by non-negative integers start with 0
syntax for accessing element i of array b is bl[i]

In Java

variable a stores a pointer to the array

b[x] = 0 means m[m[b] + x * sizeof(array-element)] « 0
In C

variable a can store a pointer to the array or the array itself

b[x] =0 means m[b + x * sizeof(array-element)] « 0

or m[m[b] + x * sizeof(array-element)] « 0
dynamic arrays are just like all other pointers
stored in TYPE*

access with either a[x] or *(a+x)

Example

The following two C programs are identical

int *a;
a[4] = 5;

int *a;
*(a+4) = 5;

For array access, the compiler would generate this code

r[O] +~a Id $a, r0
r[1] 4 Id $4, r1
r[2] <5 Id $5, r2

m[r[0]+47*r[1]] <— r[2] str2, (rO,r1,4)

o

multiplying the index 4 by 4 (size of integer) to compute the array offset

So, what does this tell you about pointer arithmetic in C?

Example

The following two C programs are identical

int *a;
af[4] = 5;

int *a;
*(@a+4) = 5;

For array access, the compiler would generate this code

r[0] “~a Id $a, rO
r[1] « 4 Id $4, r1
r[2] <5 Id $5, r2

m[r[0]+4*r[1]] « r[2] str2, (r0,r1,4)

o

multiplying the index 4 by 4 (size of integer) to compute the array offset

So, what does this tell you about pointer arithmetic in C?

Adding X to a pointer of type Y*, adds X * sizeof(Y)
to the pointer’s memory-address value.

Pointer Arithmetic in C

lts purpose

an alternative way to access dynamic arrays to the a[i]

Adding or subtracting an integer index to a pointer
results in a new pointer of the same type
value of the pointer is offset by index times size of pointer’s referent
for example
adding 3 to an int* yields a pointer value 12 larger than the original
Subtracting two pointers of the same type
results in an integer

gives number of referent-type elements between the two pointers
for example
(& a[7]) - (& a[2]))

other operators

& X the address of X
*X the value X points to

=5==(@+7) - (a+2)

10

Q u eStl ON (rom S3-C-pointer-math.c)

int *c;
void foo () {
c = (int *) malloc (10*sizeof(int));
/] ...
c = &c[3]; |
s = *&cl3l, |]

}

What is the equivalent Java statement 10 e
[A] c[0] = c[3];
[B] cl[3] = c[6];
[C] there is no typesafe equivalent
[D] not valid, because you can’t take the address of a static in Java

Looking more closely

c = &c[3]; r[0] « 0x2000 # r[0] = &c

*c = *&c[3]; r[11 « m[r[O]] #r[1]1=c
r[2] « 12 # r[2] = 3 * sizeof(int)
r[2] « r[2]+r[1] #r[2]=c+ 3
mIr[0]] « r[2] #c =c+3
r(3] « 3 #r[3] =3

r[4] <« mir[2]+4*r[3]] # r[4] = c[3]

Looking more closely

c = &c[3]; r[0] <« 0x2000 # r[0] = &c

*“c = *&c[3]; r[11 + mr[0]] #r[1] =c
r[2] « 12 # r[2] = 3 * sizeof(int)
r[2] & r[2]+r[1] #r[2l=c+ 3
m[r[0]] « r[2] #c =c+ 3
r[3] « 3 #r[3] =3

r[4] & mir[2]+4*r[3]] # r[4] = c[3]

mlr[2]] « r[4] # c[0] = c[3] mir[2]] < r[4] # c[0] = c[3]
Before Before After
: ; . | 5 2 . .
i0x2000: 0x3000 g‘) 0x3000: 0 !0X20002 0x3000 g’) '0x3000: 0 0x2000: 0x300c 0x3000: 0
. 0x3004: 1 . 0x3004: 1 . 0x3004: 1
0x3008: 2 | 0x3008: 2 0x3008: 2
0x300c: 3 0x300c: 3 0x300c: 6
0x3010: 4 0x3010: 4 0x3010: 4
0x3014: 5 0x3014: 5 c[0] = c[3] 0x3014: 5
0x3018: 6 0x3018: 6 0x3018: 6
0x301c: 7 0x301c: 7 0x301c: 7
0x3020: 8 0x3020: 8 0x3020: 8
S LA R M
And in assembly language Example: Endianness of a Computer
rf[0] <+ 0x2000 # r[0] = &c
r[1] « m[r[0]] #r[l]l =c
r(2] « 12 # r[2] = 3 * sizeof(int) .)
I’[Z] — r[2]+r[1] # I’[Z] =c+3 #include <stdio.h>
m[r[0]] « r[2] #c =c+3 .)
int main () {
(3] « 3 #r[3] =3 char a[4];
ri4] « mlr[2]+4*r[3]] # r[4] = c[3] o
mlr[2]] « r[4] # c[0] = c[3] “((intM)a) = 1;
printf("a[0]=%d a[1]=%d a[2]=%d a[3]=%d\n",a[0],a[1],a[2],a[3]);
Id $0x2000, r0 #r0 = &c }
Id (r0), r1 #rl=c
Id $12, r2 # r2 = 3*sizeof(int)
add rl, r2 #r2 =c+3
st r2, (r0) #c =c+3
Id $3, r3 #r3 =3
Id (r2,r3,4), r4 #r4 = c[3]
st r4, (r2) # c[0] = c[3]

13

Dynamic Allocation

15

Dynamic Allocation in C and Java

Programs can allocate memory dynamically
allocation reserves a range of memory for a purpose
in Java, instances of classes are allocated by the new statement
in C, byte ranges are allocated by call to malloc function

Wise management of memory requires deallocation
memory is a scare resource
deallocation frees previously allocated memory for later re-use
Java and C take different approaches to deallocation

How is memory deallocated in Java?

Deallocation in C
programs must explicitly deallocate memory by calling the free function
free frees the memory immediately, with no check to see if its still in use

Considering Explicit Delete

Let's look at this example

struct MBuf * receive () {
struct MBuf* mBuf = (struct MBuf*) malloc (sizeof (struct MBuf));

return mBuf;

}

void foo () {
struct MBuf* mb = receive ();
bar (mb);
free (mb); ("“"“

}

is it safe to free mb where it is freed?
what bad thing can happen?

17

Let's extend the example to see
what might happen in bar()
and why a subsequent call to bat() would expose a serious bug

struct MBuf * receive () {
struct MBuf* mBuf = (struct MBuf*) malloc (sizeof (struct MBuf));

return mBuf;

}

void foo () {
struct MBuf* mb = receive ();
bar (mb);
free (mb);
}
4 3

void MBuf* aMB;

void bar (MBuf* mb) {
aMB = mb;
}

void bat () {
aMB->x = 0;

This statement writes to
unallocated (or re-allocated) memory.

“—

Dangling Pointers

A dangling pointer is
* a pointer to an object that has been freed
e could point to unallocated memory or to another object

Why they are a problem
e program thinks its writing to object of type X, but isn’t

¢ it may be writing to an object of type Y, consider this sequence of events

(1) Before free:
aMB: 0x2000

!VOXZOOO: a struct mbuf i

(3) After another malloc:
aMB: 0x2000

!0x2000: another thing ’

(2) After free:
aMB: OXZOOQ

) -~
!OXZOOO: free memory 3 amand

fdangling pointer that is
really dangerous

dangling

19

Avoiding Dangling Pointers in C

Understand the problem
* when allocation and free appear in different places in your code
e for example, when a procedure returns a pointer to something it allocates
Avoid the problem cases, if possible
* restrict dynamic allocation/free to single procedure, if possible
* don’t write procedures that return pointers, if possible
* use local variables instead, where possible
- since local variables are automatically allocated on call and freed on return through stack
Engineer for memory management, if necessary
* define rules for which procedure is responsible for deallocation, if possible
* implement explicit reference counting if multiple potential deallocators
» define rules for which pointers can be stored in data structures

* use coding conventions and documentation to ensure rules are followed

20

Avoiding dynamic allocation

If procedure returns value of dynamically allocated object
¢ allocate that object in caller and pass pointer to it to callee
e good if caller can allocate on stack or can do both malloc / free itself

struct MBuf * receive () {
struct MBuf* mBuf = (struct MBuf*) malloc (sizeof (struct MBuf));

return mBuf;

}

void foo () {
struct MBuf* mb = receive ();
bar (mb);
free (mb);

}

void receive (struct MBuf* mBuf) {

-

void foo () {
struct MBuf mb;
receive (&mb);
bar (mb);

}

21

Reference Counting

Use reference counting to track object use
* any procedure that stores a reference increments the count
* any procedure that discards a reference decrements the count

* the object is freed when count goes to zero

struct MBuf* malloc_Mbuf () {
struct MBuf* mb = (struct MBuf* mb) malloc (sizeof (struct MBuf));
mb->ref_count = 1;
return mb;

}

void keep_reference (struct MBuf* mb) {
mb->ref_count ++;

}

void free_reference (struct MBuf* mb) {
mb->ref_count --;
if (mb->ref_count==0)
free (mb);
}

22

The example code then uses reference counting like this

struct MBuf * receive () {
struct MBuf* mBuf = malloc_Mbuf ();

return mBuf;

}

void foo () {
struct MBuf* mb = receive ();
bar (mb);
free_reference (mb);

}
void MBuf* aMB = 0;

void bar (MBuf* mb) {
if @MB != 0)
free_reference (aMB);
aMB = mb;
keep_reference (aMB);

}

23

Garbage Collection

In Java objects are deallocated implicitly
the program never says free
the runtime system tracks every object reference
when an object is unreachable then it can be deallocated
a garbage collector runs periodically to deallocate unreachable objects

Advantage compared to explicit delete
no dangling pointers

MBuf receive () {
MBuf mBuf = new MBuf ();

return mBuf;

}

void foo () {
MBuf mb = receive ();
bar (mb);

}

24

Discussion

What are the advantages of C’s explicit delete

What are the advantages of Java’s garbage collection

Is it okay to ignore deallocation in Java programs?

25

Memory Management in Java

Memory leak
occurs when the garbage collector fails to reclaim unneeded objects
memory is a scarce resource and wasting it can be a serous bug
its huge problem for long-running programs where the garbage accumulates
How is it possible to create a memory leak in Java?
Java can only reclaim an object if it is unreachable
but, unreachability is only an approximation of whether an object is needed
an unneeded object in a hash table, for example, is never reclaimed
The solution requires engineering

just as in C, you must plan for memory deallocation explicitly

unlike C, however, if you make a mistake, you can not create a dangling pointer

in Java you remove the references, Java reclaims the objects

Further reading

http://java.sun.com/docs/books/performance/1st_edition/html/JPAppGC.fm.html

26

