
CPSC 213
Introduction to Computer Systems

Unit 1d

Static Control Flow

1

Reading

‣Companion
• 2.7.1-2.7.3, 2.7.5-2.7.6

‣Textbook
• 3.6.1-3.6.5

2

Control Flow

‣The flow of control is
• the sequence of instruction executions performed by a program

• every program execution can be described by such a linear sequence

‣Controlling flow in languages like Java

3

Loops (S5-loop)

‣ In Java

‣ In C

public class Foo {
 static int s = 0;
 static int i;
 static int a[] = new int[10];

 static void foo () {
 for (i=0; i<10; i++)
 s += a[i];
 }
}

int s=0;
int i;
int a[] = {2,4,6,8,10,12,14,16,18,20};

void foo () {
 for (i=0; i<10; i++)
 s += a[i];
}

4

Implement loops in machine

‣Can we implement this loop with the existing ISA?

int s=0;
int i;
int a[] = {2,4,6,8,10,12,14,16,18,20};

void foo () {
 for (i=0; i<10; i++)
 s += a[i];
}

5

Loop unrolling

‣Using array syntax

‣Using pointer-arithmetic syntax for access to a?
‣Will this technique generalize

• will it work for all loops? why or why not?

int s=0;
int i;
int a[10] = {2,4,6,8,10,12,14,16,18,20};

void foo () {
 i = 0;
 s += a[i];
 i++;

 s += a[i];
 i++;

 ...

 s += a[i];
 i++;
}

6

Control-Flow ISA Extensions

‣Conditional branches
• goto <address> if <condition>

‣Options for evaluating condition
• unconditional

• conditional based on value of a register (==0, >0 etc.)
- goto <address> if <register> <condition> 0

• conditional check result of last executed ALU instruction
- goto <address> if last ALU result <condition> 0

‣Specifying target address
• absolute 32-bit address

- this requires a 6 byte instruction, which means jumps have high overhead

- is this a serious problem? how would you decide?

- are jumps for for/while/if etc. different from jumps for procedure call?

7

PC Relative Addressing

‣Motivation
• jumps are common and so we want to make them as fast as possible

• small instructions are faster than large ones, so make some jumps be two bytes

‣Observation
• some jumps such as for/while/if etc. normally jump to a nearby instruction

• so the jump distance can be described by a small number that could fit in a byte

‣ PC Relative Addressing
• specifies jump target as a delta from address of current instruction (actually next)

• in the execute stage pc register stores the address of next sequential instruction

• the pc-relative jump delta is applied to the value of the pc register
- jumping with a delta of 0 jumps to the next instruction

• jump instructions that use pc-relative addressing are called branches

‣ Absolute Addressing
• specifies jump target using full 32-bit address

• use when the jump distance too large to fit in a byte

8

ISA for Static Control Flow (part 1)

‣ ISA requirement (apparently)
• at least one PC-relative jump

- specify relative distance using real distance / 2 — why?

• at least one absolute jumps

• some conditional jumps (at least = and > 0)
- make these PC-relative — why?

‣New instructions (so far)

• jump assembly uses label, not direct hex number

• PC-relative count starts from next instruction, after fetch increments PC

Name Semantics Assembly Machine
branch pc ← (a=pc+oo*2) br a 8-oo
branch if equal pc ← (a=pc+oo*2) if r[c]==0 beq rc, a 9coo
branch if greater pc ← (a=pc+oo*2) if r[c]>0 bgt rc, a acoo
jump immediate pc ← a (a specified as label) j a b--- aaaaaaaa

9

Implementing for loops (S5-loop)

‣General form
• in C and Java

• pseudo-code template

for (i=0; i<10; i++)
 s += a[i];

for (<init>; <continue-condition>; <step>) <statement-block>

 <init>
loop: if not <continue-condition> goto end_loop
 <statement-block>
 <step>
 goto loop
end_loop:

10

‣This example
• pseudo code template

• ISA suggest two transformations
- only conditional branches we have compared to 0, not 10

- no need to store i and s in memory in each loop iteration, so use temp_ to indicate this

 i=0
loop: if not (i<10) goto end_loop
 s+=a[i]
 i++
 goto loop
end_loop:

 temp_i=0
 temp_s=0
loop: temp_t=temp_i-9
 if temp_t>0 goto end_loop
 temp_s+=a[temp_i]
 temp_i++
 goto loop
end_loop: s=temp_s
 i=temp_i

11

• assembly code

 ld $0x0, r0 # r0 = temp_i = 0
 ld $a, r1 # r1 = address of a[0]
 ld $0x0, r2 # r2 = temp_s = 0
 ld $0xfffffff7, r4 # r4 = -9
loop: mov r0, r5 # r5 = temp_i
 add r4, r5 # r5 = temp_i-9
 bgt r5, end_loop # if temp_i>9 goto +4
 ld (r1, r0, 4), r3 # r3 = a[temp_i]
 add r3, r2 # temp_s += a[temp_i]
 inc r0 # temp_i++
 br loop # goto -7
end_loop: ld $s, r1 # r1 = address of s
 st r2, 0x0(r1) # s = temp_s
 st r0, 0x4(r1) # i = temp_i

 temp_i=0
 temp_s=0
loop: temp_t=temp_i-9
 if temp_t>0 goto end_loop
 temp_s+=a[temp_i]
 temp_i++
 goto loop
end_loop: s=temp_s
 i=temp_i

Assume that all variables are global variables

12

‣General form
• in Java and C

- if <condition> <then-statements> else <else-statements>

• pseudo-code template

Implementing if-then-else (S6-if)

if (a>b)
 max = a;
else
 max = b;

 temp_c = not <condition>
 goto then if (temp_c==0)
else: <else-statements>
 goto end_if
then: <then-statements>
end_if:

13

‣This example
• pseudo-code template

• assembly code

 temp_a=a
 temp_b=b
 temp_c=temp_a-temp_b
 goto then if (temp_c>0)
else: temp_max=temp_b
 goto end_if
then: temp_max=temp_a
end_if: max=temp_max

 ld $a, r0 # r0 = &a
 ld 0x0(r0), r0 # r0 = a
 ld $b, r1 # r1 = &b
 ld 0x0(r1), r1 # r1 = b
 mov r1, r2 # r2 = b
 not r2 # temp_c = ! b
 inc r2 # temp_c = - b
 add r0, r2 # temp_c = a-b
 bgt r2, then # if (a>b) goto +2
else: mov r1, r3 # temp_max = b
 br end_if # goto +1
then: mov r0, r3 # temp_max = a
end_if: ld $max, r0 # r0 = &max
 st r3, 0x0(r0) # max = temp_max

14

Static Procedure Calls

15

Code Examples (S6-static-call)

‣Java
• a method is a sub-routine with a

name, arguments and local
scope

• method invocation causes the
sub-routine to run with values
bound to arguments and with a
possible result bound to the
invocation

‣C
• a procedure is ...

• a procedure call is ...

public class A {
 static void ping () {}
}

public class Foo {
 static void foo () {
 A.ping ();
 }
}

void ping () {}

void foo () {
 ping ();
}

16

Diagraming a Procedure Call

‣Caller
• goto ping

- j ping

• continue executing

‣Callee

• do whatever ping does

• goto foo just after call to ping()
- ??????

void foo () {
 ping ();
}

void ping () {}

How is RETURN implemented?

It’s a jump, but is the address a static property or a dynamic one?

Questions

17

Implementing Procedure Return

‣ return address is
• the address the procedure jumps to when it completes

• the address of the instruction following the call that caused it to run

• a dynamic property of the program

‣questions
• how does procedure know the return address?

• how does it jump to a dynamic address?

18

‣saving the return address
• only the caller knows the address

• so the caller must save it before it makes the call
- caller will save the return address in r6

• there is a bit of a problem here if the callee makes a procedure call, more later ...

• we need a new instruction to read the PC
- we’ll call it gpc

‣ jumping back to return address
• we need new instruction to jump to an address stored in a register

- callee can assume return address is in r6

19

‣New requirements
• read the value of the PC

• jump to a dynamically determined target address

‣Complete new set of instructions

• jump assembly uses label, not direct hex number

ISA for Static Control Flow (part 2)

Name Semantics Assembly Machine
branch pc ← (a==pc+pp*2) br a 8-pp
branch if equal pc ← (a==pc+pp*2) if r[c]==0 beq a 9cpp
branch if greater pc ← (a==pc+pp*2) if r[c]>0 bgt a acpp
jump immediate pc ← a (a specified as label) j a b--- aaaaaaaa

get pc r[d] ← pc + (o==p*2) gpc $o,rd 6fpd
jump base+offset pc ← r[t] + (o==pp*2) j o(rt) ctpp

20

Compiling Procedure Call / Return

void foo () {
 ping ();
}

void ping () {}

foo: gpc $6, r6 # r6 = pc of next instruction
 j ping # goto ping ()

ping: j (r6) # return

21

