Introduction to Computer Systems

Unit Ta
Numbers and Memory

The Big Picture

Build machine model of execution

o for Java and C programs

* by examining language features

* and deciding how they are implemented by the machine

What is required

* design an ISA into which programs can be compiled

* implement the ISA in Java in the hardware simulator

Our approach

* examine code snippets that exemplify each language feature in turn
¢ look at Java and C, pausing to dig deeper when C is different from Java
 design and implement ISA as needed

The simulator is an important tool

* machine execution is hard to visualize without it

« this visualization is really our WHOLE POINT here

Languages and Tools

SM213 Assembly

*you will trace, write, read

* use SM213 simulator to trace and execute

Java

e you will read, write

e use Eclipse IDE to edit, compile, debug, run

* SM213 simulator written in Java; you will implement specific pieces
C

e you will read, write

* gcc to compile, gdb to debug, command line to run

Lab/Assignment 1

SimpleMachine simulator
e load code into Eclipse and get it to build/run
* write and test MainMemory.java

-get

-set

~isAccessAligned

bytesToInteger
~integerToBytes

The Main Memory Class

The SM213 simulator has two main classes
* CPU implements the fetch-execute cycle

* MainMemory implements memory

The first step in building our processor

*implement 6 main internal methods of MainMemory

CPU MainMemory
fetch read isAligned
execute readinteger [N\ o] lpile/=13

write integerToBytes
writelnteger | (o[-l

set

The Code You Will Implement

Jex
* Determine whether an address is aligned to specified length.

* @param address memory address

* @param length byte length

* @return true iff address is aligned to length

x)

protected boolean iSAccessAligned (int address, int length) {
return false;

}

[o*

* Convert an sequence of four bytes into a Big Endian integer.

* @param byteAtAddrPlusO value of byte with lowest memory address

* @param byteAtAddrPlus1 value of byte at base address plus 1

* @param byteAtAddrPlus2 value of byte at base address plus 2

* @param byteAtAddrPlus3 value of byte at base address plus 3

@return Big Endian integer formed by these four bytes

/

public int bytesTolnteger (UnsignedByte byteAtAddrPlusO,
UnsignedByte byteAtAddrPlus1,
UnsignedByte byteAtAddrPlus2,
UnsignedByte byteAtAddrPlus3) {

return 0;

* Convert a Big Endian integer into an array of 4 bytes
* @param i an Big Endian integer
* @return an array of UnsignedByte

public UnsignedByte[] integerToBytes (int i) {
return null;

* Fetch a sequence of bytes from memory.

* @param address address of the first byte to fetch
* @param length number of bytes to fetch

* @return an array of UnsignedByte

*/

protected UnsignedByte[] get (int address, int length) throws ... {
UnsignedByte[] ub = new UnsignedByte [length];
ub[0] = new UnsignedByte (0); // with appropriate value
// repeat to ub[length-1] ...
return ub;

}

o
* Store a sequence of bytes into memory.
* @param address address of the first memory byte
* @param value an array of UnsignedByte values
* @throws InvalidAddressException if any address is invalid
*/
protected void set (int address, UnsignedByte[] value) throws ... {
byte b[] = new byte [value.length];
for (int i=0; i<value.length; i++)
b[i] = (byte) value[i].value();
// write b into memory ...

}

Reading

Binary, Hex, and Decimal Refresher

Bit Shifting

B H D
Companion Hexadecimal notation 0000 0 0 bit shifting: multiply/divide by powers of 2
0001 1 1 : f " n. :
« previous module: 1, 2.1 * number starts with “0x”, each digit is base 16 not ' o left shift by k bits, "<< k": multiply by 2k
*new: 2.2 (focus on 2.2.2 for this week) base 10 001l 3 3 « old bits on left end drop off, new bits on right end set to 0
. . — 2 1 0 * examples
Textbook . :Z;n?/xeieifnt i’): iozlzz:i!fe ;L?r::asers when 0100 4 4 - 0000 1010 << 1 = 0001 0100; 0x0a << 1 = Ox14; 10 << 1 =20; 10 * 2 = 20
* A Historical Perspective, Machine-Level Code, Data Formats, Data binary format is i)r/nportant 0101 5 5 - 0000 1110 < 2= 0011.1000; Cleve <<2=0x38; 14 << 2 =28; 14" 4 =56
Alignment. N b d B . - -) 0110 6 6 <<k, left shift by k bits, mult.ply by 2k
e2ed:34-3.21.3.3. 3.9.3 umpers an | tS » each hex digit (hexit) is stored by 4 bits: 0111 7 7 old bits on left end drop off, new bits on right end set to 0
ko 2.2 an s 3)‘ (0[1)x8 + (0[1)x4 + (0[1)x2 + (O[1)x1 1000 8 8 right shift by k bits, ">> k": divide by 2k
- { 2. s
Examp|es 1001 9 9 * old bits on right end drop off, new bits on left end set to 0
°led:3.1-3.2.1,3.3,3.10 o ,) 1010 a 10 - (in C stc... stay tuned for Javal)
*0x10 in binary? in decimal? 1011 b u + examples
* 0x2e in binary? in decimal? 1100 ¢ 12 - 1010 >> 1=0101
+1101 1000 1001 0110 in hex? in decimal? 1101 d 13 ”‘°>>2f‘i’”
=102 in binary? in hex? 110 e 14 why do this? two good reasons: o
1111 £ 15 * much faster than multiply. much, much faster than division
* good way to move bits around to where you need them
. | . - | . | . :
Masking Two's Complement: Reminder Two's Complement: Byte Two's Complement: 32-Bit Integers
B H Signed Decimal Unsigned
bitmask: pattern of bits you construct with/for logical unsigned 1111 1111 Oxff -1 255 unsigned
operations « all possible values interpreted as positive numbers 1111 1110 Oxfe -2 254 « all possible values interpreted as positive numbers
«mask with 0 to throw bits away *byte 8 bits) O 255 1111 1101 0":" 3 253 eint 32 bits) O 4,294,967,295
. . . 3 1111 1100 oxfc -4 252 3
mask. Wlth. 1 tollet bit values pass through . & | 1111 1011 Oxfb 5 251 |65 %
masking in binary: remember your binary truth tables! 0x0 Oxff 1111 1010 Oxfa -6 250 0x0 Oxffffff
*& AND, |: OR signed: two's complement 1111 1001 0xf9 -7 249 signed: two's complement
*1&1=1, 1&0=0, 0&1=0, 0&0=0 « the first half of the numbers are positive, the second half are negative EE ;(1)2(1) gxz _g 225 « the first half of the numbers are positive, the second half are negative
X -
*1]1=1, 1|0=1, 0|1=1, 0|0=0 e start at 0, go to top positive value, "wrap around" to most negative value, 1111 0110 0xF6 10 246 e start at 0, go to top positive value, "wrap around" to most negative value,
e example: 1111 & 0011 = 0011 end up at -1 1111 0101 OxfS 1 245 end up at -1
masking in hex: -128 -1 0 +127 1111 0100 0xf4 -12 244 -2,147,483,648 -1 O 2,147,483,647
. . 1111 0011 0xf3 -13 243
*mask with & 0 to turn bits off [3 B.. 3
k with & Oxf (1111 in binary) to let bit val through " 1@ > 11110010 0xf2 i 242 g the >
° mask wi X in binary) to let bit values pass throug
1111 0001 0xf1l -15 241
« example: Ox00ff & 0x3a2b = 0x002b 0x80 Oxff 0x0 Ox7f 11 0000 oxfo Iy o 0x80000000 Oxffffffff ~ 0x0 ox7fffffff

Two's Complement and Sign Extension

normally, pad with Os when extending to larger size
* 0x8b byte (139) becomes 0x0000008b int (139)
but that would change value for negative 2's comp:
* Oxff byte (-1) should not be 0x000000ff int (255)

so: pad with Fs with negative numbers in 2's comp:
* Oxff byte (-1) becomes Oxffffffff int (-1)
*in binary: padding with 1, not 0

reminder: why do all this?

* add/subtract works without checking if number positive or negative

Bit Shifting in Java

signed/arithmetic right shift by k bits, ">> k": divide by 2k
* old bits on right end drop off, new bits on left end set to top (sign) bit
° examples

-1010>> 1= 1101

- 1110>>2 = 1111

- 0010 >> 1 = 0001

- 0110 >> 2 = 0001
unsigned/logical right shift by k bits, ">>>k":
* old bits on right end drop off, new bits on left end set to 0
* but.. be careful - requires int/long and automatically promotes up

- so bytes automatically promoted, but with sign extension

- safest to construct bitmasks with int/long, not bytes

Numbers in Memory

Memory and Integers

Memory is byte addressed

* every byte of memory has a unique address, numbered from
OtoN

*N is huge: billions is common these days (2-16 GB)
Integers can be declared at different sizes
e byte is 1 byte, 8 bits, 2 hexits

eshort is 2 bytes, 16 bits, 4 hexits

*int or word is 4 bytes, 32 bits, 8 hexits

e long is 8 bytes, 64 bits, 16 hexits

Integers in memory

© ® N O U A WN KO

e reading or writing an integer requires specifying a range of
byte addresses

il

Making Integers from Bytes

Memory
Ouir first architectural decisions

* assembling memory bytes into integer registers E
Consider 4-byte memory word and 32-bit register

*e.g., the word at address 4 is in bytes 4, 5, 6 and 7.

Big or Little Endian (end means where start from, not finish)
*we could start with the BIG END of the number (most everyone but Intel

it has memory addresses i, i+1, i+2, and i+3
e we’ll just say it's “at address i and is 4 bytes long”

i i+t | i+2 | i+3 |
23110224 22810216 2151928 271020 Register bits
* or we could start with the LITTLE END (Intel x86, some others)
| i+3 || i+2 | i+t | i]
23110224 22315216 015t9 08 271920 Register bits

Making Integers from Bytes

Memory
Our first architectural decisions
* assembling memory bytes into integer registers E
Consider 4-byte memory word and 32-bit register
*e.g., the word at address 4 is in bytes 4, 5, 6 and 7.

Big or Little Endian (end means where start from, not finish)
*we could start with the BIG END of the number (most everyone but Intel)

it has memory addresses i, i+1, i+2, and i+3
e we’ll just say it's “at address i and is 4 bytes long”

i i+t | i+2 || i+3 |
23110224 22810216 2151928 271020 Register bits
» or we could start with the LITTLE END (Intel x86, some others)
| i+ || i+2 | i+t || i]
23119224 22315216 015t9 08 271920 Register bits

Aligned or Unaligned Addresses

e we could allow any number to address a multi-byte integer

. X

| —

L

[| * disallowed on many

C)] architectures

* allowed on Intel,
but slower

L
L
C
L

* or we could require that addresses be aligned to integer-size boundary

=oEkk_ .Y

*SM213
address modulo chunk-size is always zero

4-byte words

* Power-of-Two Aligned Addresses Simplify Hardware

- smaller things always fit complete inside of bigger things

e

word contains exactly two
complete shorts

L !
- byte address from integer address: divide by power to two, which is just shifting bits

jl2*==j>>k (j shifted k bits to right)

Aligned or Unaligned Addresses

*we could allow any number to address a multi-byte integer

[e—
L |
L]
C]

* or we could require that addresses be aligned to integer-size boundary

SL T =

address modulo chunk-size is always zero

*SM213 alignment:
4-byte words

* Power-of-Two Aligned Addresses Simplify Hardware
- smaller things always fit complete inside of bigger things
— e
C] L !

word contains exactly two
complete shorts

- byte address from integer address: divide by power to two, which is just shifting bits

jl2¥==j>>k (j shifted k bits to right)

Computing Alignment

B H D
boolean align(number, size) 0000 0 O
* does a number fit nicely for a particular size (in bytes)? 0001 1 1
0010 2 2
divi . " . . 0011 3 3
ivide number n by size s (in bytes), aligned if no 0100 4 4
remainder
)) . 0101 5 5
« easy if number is decimal
. .) 0110 6 6
* otherwise convert from hex or binary to decimal
i 0111 7 7
check ifnmods =0 000 8 8
* mod notation usually '%'. same as division, of course... 1001 9 9
check if certain number of final bits are all 0 1010 a 10
* pattern? 1011 b 11
- last 1 digit for 2-byte short 1100 c 12
last 2 digits for 4-byte world 1101 d 13
- last 8 clhg.ils for 8-byte Iinglong)) 1110 e 14
* last k digits, where 2k =s (size in bytes) 1111 £ 15

* easy if number is hex: convert to binary and check

In the Lab ... Revisited

SimpleMachine simulator
e load code into Eclipse and get it to build/run
* write and test MainMemory.java
- get/set should check for out of bounds access but not alignment

- isAccessATligned checks for alignment

Questions

Which of the following statement (s) are true
*[A] 6 == 1102 is aligned for addressing a short

*[B] 6 == 1102 is aligned for addressing a int

*[C] 20 == 10100z is aligned for addressing a int

*[D] 20 == 10100z is aligned for addressing a long

Which of the following statements are true

*[A] memory stores Big Endian integers

*[B] memory stores bytes interpreted by the CPU as Big Endian integers
*[C] Neither

*[D] I don’t know

Which of these are true

*[A] The Java constants 16 and 0x10 are exactly the same integer
*[B] 16 and 0x10 are different integers

*[C] Neither

*[D] I don't know

What is the Big-Endian integer value at address 4 below?

°[A] 0x1c04b673

“[B] @xc1406b37 Memory

°[C] 0x73b6041c 0x0: Oxfe

*[D] 0x376b40cl 0x1: 0x32

*[E] none of these Ox2: 0x87

°[F] | don’t know 0x3: 0x9a
Ox4: 0x73
0x5: Oxb6
0x6: 0x04

Ox7: Oxlc

What is the value of i after this Java statement executes?

i = Oxff8b0000 & 0x00ff0000;
*[A] Oxffff0000
*[B] 0xff8b0000
*[C] 0x008b0000
*[D] | don’t know

What is the value of i after this Java statement executes?
inti = (0x0000008b) << 16;

°[A] 0x8b

°[B] 0x0000008b
°[C] 0x008b0000
¢ [D] Oxff8b0000d
*[E] None of these
*[F] | don’t know

What is the value of i after this Java statement executes?

[A]
[B]
[l
D]
[E]
[F]

inti = (byte)(0x8b) << 16;

0x8b
0x0000008b
0x008b0000
Oxff8b0000
None of these
| don’t know

