
CPSC 213
Introduction to Computer Systems

Unit 0

Introduction

1

Overview of the course

‣Hardware context of a single executing program
• hardware context is CPU and Main Memory

• develop CPU architecture to implement C and Java

• differentiate compiler (static) and runtime (dynamic) computation

‣System context of multiple executing programs with IO
• extend context to add IO, concurrency and system software

• thread abstraction to hide IO asynchrony and to express concurrency

• synchronization to manage concurrency

• virtual memory to provide multi-program, single-system model

• hardware protection to encapsulate operating system

• message-passing to communicate between processes and machines

GOAL: To develop a model of computation that is rooted in what
really happens when programs execute.

2

What you will get out of this ...

‣Become a better programmer by
• deepening your understand of how programs execute

• learning to build concurrent and distributed programs

‣Learn to design real systems by
• evaluating design trade-offs through examples

• distinguish static and dynamic system components and techniques

‣ Impress your friends and family by
• telling them what a program really is

3
4

About the Course - Logistics

‣it's all on the web page ...
•http://www.ugrad.cs.ubc.ca/~cs213/winter12t1

- news, admin details, schedule and readings

- lecture slides (always posted before class)

- 213 Companion (free PDF)

- Piazza for discussion

- marks (coming soon) secure download

•updated often, don't forget to reload page!

‣me
•instructor: Tamara Munzner

- call me Tamara or Dr. Munzner, as you like	 	

- office hours in X661 Mon/Fri 9-10am or by appointment

this elevator to X6 me!
Xwing entrances facing Dempster

4

5

Reading

‣see web page for exact schedule

‣textbook: Bryant and O'Hallaron
•also used in CPSC 313 followon course

•ok to use either 1st or 2nd edition (very little difference for us)

‣213 Companion
•additional reading; PDF posted on web page

5
6

Course Policies

‣read http://www.ugrad.cs.ubc.ca/~cs213/policies.html

‣marking
•assignments: 20%

- 9 labs/assignments (same thing, no separate lab material)

- usually one week for each, out Monday morning and due next Monday 6pm
• exceptions for exam weeks, to give you time for studying	 	

•quizzes: 30%
- Oct 15, Nov 5

•final: 50%
- date TBD. do not book tickets out of town until announced!

•must pass labs and quizzes and final (50% or better) to pass course

‣assignments
•critical for learning material

•they build on each other; don't fall behind

•come get help if you get stuck - labs, office hours...

6

Scaling and Regrading

‣I often scale exams
•so don't panic if it seems hard while you're taking it!

‣regrading
•detailed argument in writing required (email or paper)

•read through solutions first; no requests accepted until 24 hours after work
is returned

•email TA first for assignments, then instructor if not resolved

•bring paper to instructor for quizzes/midterms

7
7

8

Late/Missed Work, Illness

‣late work penalty
•25% first day (or fraction of day)

•50% second day (or fraction thereof)

•no late work accepted after 48 hrs
- no exceptions

- handin drafts early, handin often: do not wait until last minute!

- check what you have handed in!

‣email me immediately if you'll miss lab/exam from illness

‣written documentation due within 7 days after you return to
school
•copy of doctor's note or other proof (ICBC accident report, etc)

•written cover sheet with dates of absence and list of work missed

‣I'll decide on how to handle
•might give extension if solutions not out yet

•might grade you only on completed work
8

Cheating: Things I Never Want To Hear

‣read http://www.ugrad.cs.ubc.ca/~cs213/cheat.html

‣Cheating: The List Of Things I Never Want To Hear Again
•read this page, ask if you have any questions!

•you must sign statement that you have read and completely understood
this page before turning in assignments

•http://www.cs.ubc.ca/~tmm/courses/cheat.html

‣the bottom line
•the fundamental reason not to cheat is you don't learn the material

•you need to work through the labs yourself to learn this stuff!

•if you cheat on the labs, you will fail the exams

9
9

10

Course-Specific Guidelines

‣work together and help each other - but don’t cheat!
•never present anyone else’s work as your own

•but, don’t let this stop you from helping each other learn...
- general discussion always fine

- one-hour context switch rule for specific discussions (Gilligan's Island rule)
• don't take written notes

• do something else for an hour

• then sit down to do the work on your own

- proper attribution
• include list of names if you had significant discussions with others

•not allowed
- working as a team and handing in joint work as your own

- looking at somebody else's paper or smuggling notes into exam

- getting or giving code, electronically or hardcopy

- typing in code from somebody else's screen

- using code from previous terms

- paying somebody to write your code

•it's a bad idea: you don't learn the stuff, and we'll probably catch you
- I do prosecute, so that it's a level playing field for everybody else

- possible penalties: 0 for the work, 0 for the course, permanent notation in transcript, suspended...

10

What do you know now?

11

What happens when a program runs

‣Here’s a program

‣What do you understand about the execution of insert?

class SortedList {
 static SortedList aList;
 int size;
 int list[];

 void insert (int aValue) {
 int i = 0;
 while (list[i] <= aValue)
 i++;
 for (int j=size-1; j>=i; j--)
 list[j+1] = list[j];
 list[i] = aValue;
 size++;
 }
}

12

‣Example
• list stores { 1, 3, 5, 7, 9 }

• SortedList.aList.insert(6) is called

‣Data structures
• draw a diagram of the data structures

• as they exist just before insert is called

class SortedList {
 static SortedList aList;
 int size;
 int list[];

 void insert (int aValue) {
 int i = 0;
 while (list[i] <= aValue)
 i++;
 for (int j=size-1; j>=i; j--)
 list[j+1] = list[j];
 list[i] = aValue;
 size++;
 }
}

13

‣Example
• list stores { 1, 3, 5, 7, 9 }

• SortedList.aList.insert(6) is called

‣Data structures
• draw a diagram of the data structures

• as they exist just before insert is called

SortedList Class
aList

class SortedList {
 static SortedList aList;
 int size;
 int list[];

 void insert (int aValue) {
 int i = 0;
 while (list[i] <= aValue)
 i++;
 for (int j=size-1; j>=i; j--)
 list[j+1] = list[j];
 list[i] = aValue;
 size++;
 }
}

13

‣Example
• list stores { 1, 3, 5, 7, 9 }

• SortedList.aList.insert(6) is called

‣Data structures
• draw a diagram of the data structures

• as they exist just before insert is called

a SortedList Object
size
list

5

SortedList Class
aList

class SortedList {
 static SortedList aList;
 int size;
 int list[];

 void insert (int aValue) {
 int i = 0;
 while (list[i] <= aValue)
 i++;
 for (int j=size-1; j>=i; j--)
 list[j+1] = list[j];
 list[i] = aValue;
 size++;
 }
}

13

‣Example
• list stores { 1, 3, 5, 7, 9 }

• SortedList.aList.insert(6) is called

‣Data structures
• draw a diagram of the data structures

• as they exist just before insert is called

a SortedList Object
size
list

5

SortedList Class
aList

class SortedList {
 static SortedList aList;
 int size;
 int list[];

 void insert (int aValue) {
 int i = 0;
 while (list[i] <= aValue)
 i++;
 for (int j=size-1; j>=i; j--)
 list[j+1] = list[j];
 list[i] = aValue;
 size++;
 }
}

13

‣Example
• list stores { 1, 3, 5, 7, 9 }

• SortedList.aList.insert(6) is called

‣Data structures
• draw a diagram of the data structures

• as they exist just before insert is called

a SortedList Object
size
list

5

SortedList Class
aList

1
3
5
7
9
0
0
0
0
0

assuming list[] was
initialized to store 10
elements:

list = new Integer[10];

class SortedList {
 static SortedList aList;
 int size;
 int list[];

 void insert (int aValue) {
 int i = 0;
 while (list[i] <= aValue)
 i++;
 for (int j=size-1; j>=i; j--)
 list[j+1] = list[j];
 list[i] = aValue;
 size++;
 }
}

13

‣Example
• list stores { 1, 3, 5, 7, 9 }

• SortedList.aList.insert(6) is called

‣Data structures
• draw a diagram of the data structures

• as they exist just before insert is called

a SortedList Object
size
list

5

SortedList Class
aList

1
3
5
7
9
0
0
0
0
0

assuming list[] was
initialized to store 10
elements:

list = new Integer[10];

class SortedList {
 static SortedList aList;
 int size;
 int list[];

 void insert (int aValue) {
 int i = 0;
 while (list[i] <= aValue)
 i++;
 for (int j=size-1; j>=i; j--)
 list[j+1] = list[j];
 list[i] = aValue;
 size++;
 }
}

13

‣Data structures
• let's dig a little deeper

• which of these existed before program started?
- these are the static features of the program

• which were created by execution of program?
- these are the dynamic features of the program

class SortedList {
 static SortedList aList;
 int size;
 int list[];

 void insert (int aValue) {
 int i = 0;
 while (list[i] <= aValue)
 i++;
 for (int j=size-1; j>=i; j--)
 list[j+1] = list[j];
 list[i] = aValue;
 size++;
 }
}

14

‣Data structures
• let's dig a little deeper

• which of these existed before program started?
- these are the static features of the program

• which were created by execution of program?
- these are the dynamic features of the program

class SortedList {
 static SortedList aList;
 int size;
 int list[];

 void insert (int aValue) {
 int i = 0;
 while (list[i] <= aValue)
 i++;
 for (int j=size-1; j>=i; j--)
 list[j+1] = list[j];
 list[i] = aValue;
 size++;
 }
}

Static:
 * class and aList variable
 (sort of - clearer in C)

SortedList Class
aList

14

‣Data structures
• let's dig a little deeper

• which of these existed before program started?
- these are the static features of the program

• which were created by execution of program?
- these are the dynamic features of the program

class SortedList {
 static SortedList aList;
 int size;
 int list[];

 void insert (int aValue) {
 int i = 0;
 while (list[i] <= aValue)
 i++;
 for (int j=size-1; j>=i; j--)
 list[j+1] = list[j];
 list[i] = aValue;
 size++;
 }
}

Static:
 * class and aList variable
 (sort of - clearer in C)

SortedList Class
aList

Dynamic:
 * SortedList object
 * size and list variables
 * value of aList, size and list
 * list of 10 integers

1
3
5
7
9
0
0
0
0
0

a SortedList Object
size
list

5

14

‣Execution of insert
• how would you describe this execution?

• carefully, step by step?

class SortedList {
 static SortedList aList;
 int size;
 int list[];

 void insert (int aValue) {
 int i = 0;
 while (list[i] <= aValue)
 i++;
 for (int j=size-1; j>=i; j--)
 list[j+1] = list[j];
 list[i] = aValue;
 size++;
 }
}

1
3
5
7
9
0
0
0
0
0

15

‣Execution of insert
• how would you describe this execution?

• carefully, step by step?

Sequence of Instructions
 * program order
 * changed by control-flow structures

class SortedList {
 static SortedList aList;
 int size;
 int list[];

 void insert (int aValue) {
 int i = 0;
 while (list[i] <= aValue)
 i++;
 for (int j=size-1; j>=i; j--)
 list[j+1] = list[j];
 list[i] = aValue;
 size++;
 }
}

1
3
5
7
9
0
0
0
0
0

15

‣Execution of insert
• how would you describe this execution?

• carefully, step by step?

Sequence of Instructions
 * program order
 * changed by control-flow structures

class SortedList {
 static SortedList aList;
 int size;
 int list[];

 void insert (int aValue) {
 int i = 0;
 while (list[i] <= aValue)
 i++;
 for (int j=size-1; j>=i; j--)
 list[j+1] = list[j];
 list[i] = aValue;
 size++;
 }
}

 [execute SortedList.aList.insert(6)]
 aValue = 6
 i = 0
 if list[i]>aValue goto end-while (1>6)
 i = 0+1 (1)
 if list[i]>aValue goto end-while (3>6)
 i = 1+1 (2)
 if list[i]>aValue goto end-while (5>6)
 i = 2+1 (3)
 if list[i]>aValue goto end-while (7>6)
end-while: j = size-1 (4)
 if j<i goto end-for (4<3)
 list[i+1] = list[i] (list[5]=9)
 j = 4-1 (3)
 if j<i goto end-for (3<3)
 list[i+1] = list[i] (list[4]=7)
 j = 3-1 (2)
 if j<i goto end-for (2<3)
end-for: list[i] = aValue (list[3] = 6)
 size = size+1 (6)
 [statement after SortedList.aList.insert(6)]

1
3
5
7
9
0
0
0
0
0

15

‣Execution of insert
• how would you describe this execution?

• carefully, step by step?

Sequence of Instructions
 * program order
 * changed by control-flow structures

class SortedList {
 static SortedList aList;
 int size;
 int list[];

 void insert (int aValue) {
 int i = 0;
 while (list[i] <= aValue)
 i++;
 for (int j=size-1; j>=i; j--)
 list[j+1] = list[j];
 list[i] = aValue;
 size++;
 }
}

 [execute SortedList.aList.insert(6)]
 aValue = 6
 i = 0
 if list[i]>aValue goto end-while (1>6)
 i = 0+1 (1)
 if list[i]>aValue goto end-while (3>6)
 i = 1+1 (2)
 if list[i]>aValue goto end-while (5>6)
 i = 2+1 (3)
 if list[i]>aValue goto end-while (7>6)
end-while: j = size-1 (4)
 if j<i goto end-for (4<3)
 list[i+1] = list[i] (list[5]=9)
 j = 4-1 (3)
 if j<i goto end-for (3<3)
 list[i+1] = list[i] (list[4]=7)
 j = 3-1 (2)
 if j<i goto end-for (2<3)
end-for: list[i] = aValue (list[3] = 6)
 size = size+1 (6)
 [statement after SortedList.aList.insert(6)]

Instruction Types?

1
3
5
7
9
0
0
0
0
0

15

‣Execution of insert
• how would you describe this execution?

• carefully, step by step?

Sequence of Instructions
 * program order
 * changed by control-flow structures

class SortedList {
 static SortedList aList;
 int size;
 int list[];

 void insert (int aValue) {
 int i = 0;
 while (list[i] <= aValue)
 i++;
 for (int j=size-1; j>=i; j--)
 list[j+1] = list[j];
 list[i] = aValue;
 size++;
 }
}

 [execute SortedList.aList.insert(6)]
 aValue = 6
 i = 0
 if list[i]>aValue goto end-while (1>6)
 i = 0+1 (1)
 if list[i]>aValue goto end-while (3>6)
 i = 1+1 (2)
 if list[i]>aValue goto end-while (5>6)
 i = 2+1 (3)
 if list[i]>aValue goto end-while (7>6)
end-while: j = size-1 (4)
 if j<i goto end-for (4<3)
 list[i+1] = list[i] (list[5]=9)
 j = 4-1 (3)
 if j<i goto end-for (3<3)
 list[i+1] = list[i] (list[4]=7)
 j = 3-1 (2)
 if j<i goto end-for (2<3)
end-for: list[i] = aValue (list[3] = 6)
 size = size+1 (6)
 [statement after SortedList.aList.insert(6)]

Instruction Types?
 * read/write variable
 * arithmetic
 * conditional goto

1
3
5
7
9
0
0
0
0
0

15

‣Data structures
• variables have a storage location and a value

• some variables are created before the program starts

• some variables are created by the program while it runs

• variable values can be set before program runs or by the execution

‣Execution of program statements
• execution is a sequence of steps

• sequence-order can be changed by certain program statements

• each step executes an instruction

• instructions access variables, do arithmetic, or change control flow

Execution: What you Already Knew

16

An Overview of Computation

17

Reading

‣Companion
• 1, 2.1

18

Phases of Computation

‣ Human creation
• design program and describe it in high-level language

‣ Compilation
• convert high-level, human description into machine-executable text

‣ Execution
• a physical machine executes the text

• parameterized by input values that are unknown at compilation

• producing output values that are unknowable at compilation

‣ Two important initial definitions
• anything that can be determined before execution is called static

• anything that can only be determined during execution is called dynamic

Human
Creation

Source
Code

Compilation

Object
Code

Execution

Dynamic
State

19

Phases of Computation

‣ Human creation
• design program and describe it in high-level language

‣ Compilation
• convert high-level, human description into machine-executable text

‣ Execution
• a physical machine executes the text

• parameterized by input values that are unknown at compilation

• producing output values that are unknowable at compilation

‣ Two important initial definitions
• anything that can be determined before execution is called static

• anything that can only be determined during execution is called dynamic

Human
Creation

Source
Code

Compilation

Object
Code

Execution

Dynamic
State

19

Examples of Static vs Dynamic State

‣Static state in Java

‣Dynamic state in Java

20

A Simple Machine that can Compute

‣Memory
• stores programs and data

• everything in memory has a unique name: its memory location (address)

• two operations: read or write value at location X

‣CPU
• machine that executes programs to transform memory state

• reads program from memory on demand one step at a time

• each step may also read or write memory

‣Not in the Simple Machine
• I/O Devices such as mouse, keyboard, graphics, disk and network

• we will deal with these other things in the second half of the course

CPU Memory

21

The Simple Machine Model
A Closer Look

22

How do we start?

‣One thing we need to do is add integers
• you already know how to do this from 121 (hopefully :))

‣A 32-bit Adder
• implemented using logic gates implemented by transistors

• it adds bits one at a time, with carry-out, just like in grade 2.

+
INPUT register INPUT register

OUTPUT register

23

Generalizing the Adder

‣What other things do we want to do with Integers

‣What do we do with the value in the output register

24

Register File and ALU

‣Arithmetic and Logic Unit (ALU)
• generalizes ADDER to perform many operations on integers

• three inputs: two source operands (valA, valB) and an operation code (opCode)

• output value (valE) = operation-code (operand0, operand1)

‣Register File
• generalizes input and output registers of ADDER

• a single bank of registers that can be used for input or output

• registers named by numbers: two source (srcA, srcB) and one destination (dst)

valA

valB

Register File
0:

1:

2:

3:

4:

5:

6:

7:

ALU

srcB

srcA
dst valE

opCode

25

‣Functional View
• input for one step: opCode, srcA, srcB, and dst

• a program is a sequence of these steps (and others)

valA

valB

Register File
0:

1:

2:

3:

4:

5:

6:

7:

ALU

srcB

srcA
dst valE

opCode

Register File
and
ALU

srcB

srcA

dst

opCode

26

‣Current model is too restrictive
• to add two numbers the numbers must be in registers

• programs must specify values explicitly

‣Extend model to include immediates
• an immediate value is a constant specified by a program instruction

• extend model to allow some instructions to specify an immediate (valC)

Putting Initial Values into Registers

valA

valB

Register File
0:

1:

2:

3:

4:

5:

6:

7:

ALU

srcB

srcA
dst valE

opCode

valC

27

‣Functional View
• we now have an additional input, the immediate value, valC

valA

valB

Register File
0:

1:

2:

3:

4:

5:

6:

7:

ALU

srcB

srcA
dst valE

opCode

valC

Register File
and
ALUsrcB

srcA

dst

opCode

valC

28

‣Memory is
• an array of bytes, indexed by byte address

‣Memory access is
• restricted to a transfer between registers and memory

• the ALU is thus unchanged, it still takes operands from registers

• this is approach taken by Reduced Instruction Set Computers (RISC)

‣Extending model to include RISC-like memory access
• opcode selects from set of memory-access and ALU operations

• memory address and value are in registers

Memory Access

ALU

Memory

0:

1:

2:

3:

4:

5:

6:

7:

29

‣Central Processing Unit or Core (CPU)
• a register file

• logic for ALU, memory access and control flow

• a clock to sequence instructions

• memory cache of some active parts of memory (e.g., instructions)

‣Memory
• is too big to fit on the CPU chip, so it is stored off chip

• much slower than registers or cache (200 x slower than registers)

The Simple Machine

ALU

Memory

0:

1:

2:

3:

4:

5:

6:

7:

CPU/core

30

‣Central Processing Unit or Core (CPU)
• a register file

• logic for ALU, memory access and control flow

• a clock to sequence instructions

• memory cache of some active parts of memory (e.g., instructions)

‣Memory
• is too big to fit on the CPU chip, so it is stored off chip

• much slower than registers or cache (200 x slower than registers)

The Simple Machine

ALU

Memory

0:

1:

2:

3:

4:

5:

6:

7:

CPU/core

30

‣A Program
• sequence of instructions stored in memory

‣An Instruction
• does one thing: math, memory-register transfer, or flow control

• specifies a value for each of the functional inputs

CPU
srcB

srcA

dst

opCode

valC

0: valC=?, dst=?, srcA=?, srcB=?, opCode=?
1: valC=?, dst=?, srcA=?, srcB=?, opCode=?
2: valC=?, dst=?, srcA=?, srcB=?, opCode=?
3: valC=?, dst=?, srcA=?, srcB=?, opCode=?

A Program

ALU

Memory

0:

1:

2:

3:

4:

5:

6:

7:

CPU/core

31

Instruction Set Architecture (ISA)

‣ The ISA is the “interface” to a processor implementation
• defines the instructions the processor implements

• defines the format of each instruction

‣ Instruction format
• is a set of bits (a number)

• an opcode and set of operand values

‣ Types of instruction
• math

• memory access

• control transfer (gotos and conditional gotos)

‣ Design alternatives
• simplify compiler design (CISC such as Intel Architecture 32)

• simplify processor implementation (RISC)

‣ Assembly language
• symbolic representation of machine code

32

Example Instruction: ADD

‣Description
• opCode = 61

• two source operands in registers: srcA = rA, srcB = rB

• put destination in register: dst = rB

‣Assembly language
• general form: add rA, rB
• e.g., add r0, r1
‣ Instruction format

• 16 bit number, divided into 4-bit chunks: 61sd
• high-order 8 bits are opCode (61)

• next 4 bits are srcA (s)

• next 4 bits are srcB/dst (d)

0110 0001 ssss dddd

0110 00010000 0001

add rA, rB

add r0, r1

33

Simulating a Processor Implementation

‣Java simulator
• edit/execute assembly-language

• see register file, memory, etc.

‣You will implement
• the fetch + execute logic

• for every instruction in SM213 ISA

‣SM213 ISA
• developed as we progress through key language features

• patterned after MIPS ISA, one of the 2 first RISC architectures

Fetch Instruction from Memory Execute it Tick Clock

34

