Introduction to Computer Systems

Unit 2d
Virtual Memory

Reading

Companion
5
Text

* Physical and Virtual Addressing, Address Spaces, Page Tables, Page Hits,
Page Faults

*2ed: 9.1-9.2,9.3.2-9.3.4
*1ed: 10.1-10.2, 10.3.2-10.3.4

Multiple Concurrent Program Executions

So far we have

* a single program

* multiple threads

Allowing threads from different program executions

* we often have more than one thing we want to do at once(ish)

* threads spend a lot of time blocked, allowing other threads to run

* but, often there aren’t enough threads in one program to fill all the gaps
What is a program execution

e an instance of a program running with its own state stored in memory

* compiler-assigned addresses for all static memory state (globals, code etc.)
 security and failure semantics suggest memory isolation for each execution
But, we have a problem

e there is only one memory shared by all programs ...

Physical Address Space Collisions

each program has assumed it is free to read/write
anywhere in memory

doesn’t work when multiple programs run at once

Id $0x1000, r2
Id $3,r3
str3, (r2)

Id $0x1000, r4
Id $42, r5
str5, (r4)

synchronization does not solve problem
¢ it’s a problem through the whole program

*not a short critical section with deliberate use of shared memory to
communicate between threads

Virtual Memory

Virtual Address Space

* an abstraction of the physical address space of main (i.e., physical) memory
® programs access memory using virtual addresses

* hardware translates virtual address to physical memory addresses
Process

© a program execution with a private virtual address space

 associated with authenticated user for access control & resource accounting
° running a program with 1 or more threads

MMU

* memory management unit

 the hardware that translates virtual address to physical address

« performs this translation on every memory access by program

Virtual Address Translation

each program uses the same virtual address, but they map
to different physical addresses

Id $0x1000, r2 Id $0x1000, r4

Id $3,r3 Id $42, r5
st r3, (r2) str5, (r4)
VA: 0x1000 VA: 0x1000

Implementing the MMU

Let's think of this in the simulator ...
e introduce a class to simulate the MMU hardware

class MMU extends MainMemory {
byte [] physicalMemory;
AddressSpace currentAddressSpace;

void setAddressSpace (AddressSpace* as);
byte readByte (int va) {
int pa = currentAddressSpace.translate (va);
return physicalMemory.read (pa);

}

* currentAddressSpace is a hardware register

» the address space performs virtual-to-physical address translation

Implementing Address Translation

class MMU extends MainMemory {
byte [] physicalMemory;
AddressSpace currentAddressSpace;

void setAddressSpace (AddressSpace* as);

int pa = currentAddressSpace.translate (va); |
return physicalMemory.read (pa); |
}

}

Goal

e translate any virtual address to a unique physical address (or none)
« fast and efficient hardware implementation

Let's look at a couple of alternatives ...

Base and Bounds

An address space is
* a single, variable-size, non-expandable chunk of physical memory
*named by its base physical address and its length

0
As a class in the simulator

[]
class AddressSpace {
int baseVA, basePA, bounds;
L
int translate (int va) {
int offset = va - baseVA; °
if (offset < 0 || offset > bounds)
throw new lllegalAddressException (); L
return basePA + offset;
0
}
Problems "

But, Address Space Use May Be Sparse

Issue

* the address space of a program execution is divided into regions
 for example: code, globals, heap, shared-libraries and stack

* there are large gaps of unused address space between these regions
Problem

* a single base-and-bounds mapping from virtual to physical addresses
* means that gaps in virtual address space will waste physical memory .
* this is the Internal Fragmentation problem

7 wasted
| — Physical
L o—

Memory

Solution

Segmentation

An address space is

* a set of segments

A segment is

* a single, variable-size, non-expandable chunk of physical memory
* named by its base virtual address, physical address and length
Implementation in Simulator

class AddressSpace {
Segment segment[];

int translate (int va) {
for (int i=0; i<segments.length; i++) {
int offset = va - segment[i].baseVA;
if (offset >= 0 && offset < segment[i].bounds) {
pa = segment[i].basePA + offset;
return pa;

}

il 10l

throw new lllegalAddressException (va);

Problem

But, Memory Use is Not Known Statically

Issue

* segments are not expandable; their size is static

* some segments such as stack and heap change size dynamically
Problem

* segment size is chosen when segment is created

e too large and internal fragmentation wastes memory

* too small and stack or heap restricted

Wasted ‘ OR

Physical Broken

Memory I ‘ Program
Solution

* allow segments to expand?

But, There May Be No Room to Expand

Issue

* segments are contiguous chunks of physical memory

¢ a segment can only expand to fill space between it and the next segment
Problem

* there is no guarantee there will be room to expand a segment

* the available memory space is not where we want it (i.e., adjacent to segment)
* this is the External Fragmentation problem

Mayb

E Sg%: But, Now

[]| Room to We're
Expand Stuck

Solution

But, Moving Segments is Expensive

Issue

* if there is space in memory to store expanding segment, but not where it is
 could move expanding segment or other segments to make room

» external fragmentation is resolved by moving things to consolidate free space
Problem

* moving is possible, but expensive

* to move a segment, all of its data must be copied

* segments are large and memory copying is expensive

Maybe Move

E So:’ne Other
:] Room to Segments
Expand to Make

Room

Expand Segments by Adding Segments

What we know

* segments should be non-expandable

* size can not be effectively determined statically
Idea

¢ instead of expanding a segment

* make a new one that is adjacent virtually, but not physically

= ... =
—

Allocate a
New
Segment

virtual addresses m ... n-1

]

virtual addresses n ... p-1

Problem

*oh no! another problem! what is it? why does it occur?

Eliminating External Fragmentation

The problem with what we are doing is

« allocating variable size segments leads to external fragmentation of memory
e this is an inherent problem with variable-size allocation

What about fixed sized allocation

* could we make every segment the same size?

e this eliminates external fragmentation

* but, if we make segments too big, we'll get internal fragmentation

¢ so, they need to be fairly small and so we’ll have lots of them

Problem

Translation with Many Segments

What is wrong with this approach if there are many segments?

class AddressSpace {
Segment segment[];

int translate (int va) {
for (int i=0; i<segments.length; i++) {
int offset = va - segment[i].baseVA;
if (offset > 0 && offset < segment[i].bounds) {
pa = segment[i].basePA + offset;
return pa;

}

throw new lllegalAddressException (va);

Now what?

* is there another way to locate the segment, when segments are fixed size?

Paging

Key Idea

* Address Space is divided into set of fixed-size segments called pages

* number pages in virtual address order

* page number = virtual address / page size

Page Table

* indexed by virtual page number (vpn)

* stores base physical address (actually address / page size (pfn) to save space)
* stores valid flag, because some segment numbers may be unused

_——

Address Translation using a Page Table

class PageTableEntry {
boolean isValid;
int pfn;

}

class AddressSpace {
PageTableEntry pte[];

int translate (int va) {
intvpn = va / PAGE_SIZE;
int offset = va % PAGE_SIZE;
if (pte[vpn].isValid)
return pte[vpn].pfn * PAGE_SIZE + offset;
else
throw new lllegalAddressException (va);

New terminology =]
* page a small, fixed-sized (4-KB) segment :)<

* page table virtual-to-physical translation table . —
* pte page table entry A
°vpn virtual page number S /

° pfn physical page frame number

* offset byte offset of address from beginning of page

Address Translation

int translate (int va) {
intvpn =va>>> 12;
int offset = va & Oxfff;
if (pte[vpn].isValid)
return pte[vpn].pfn << 12 | offset;

The bit-shifty version
* assume that page size is 4-KB = 4096 = 22
* assume addresses are 32 bits
= then, vpn and pfn are 20 bits and offset is 12 bits
* pte is pfn plus valid bit, so 21 bits or so, say 4 bytes

31 va: 32 bit address 0
T T T
L_vpn ,, offset
20 bits (5 hexits) 12 bits
(8 hexits)
Page Table Page (4KB)
(~4MB for 220 ptes)
vd
pa

pte[vpn] = pfn

* implementation code and data can only be accessed through interface
Obstacle

* can not use language protection without excluding languages like C
Use Hardware for Protection

* virtual memory already provides a way to protect memory

e data in one address space can not even be named by thread in another
*so, we've got the protected implementation part

*we’ll need to add the interface part

¢ implements a set of abstractions for applications

* it encapsulates the implementation of these abstractions, including hardware
The Operating System’s Address Space

* a part of every application’s page table is reserved for the OS

¢ all code and data of OS is part of every page table (exact copies)

* and so the operating system is part of every application’s address space
Dual Protection Domains

* each address space splits into application and system protection domain
¢ CPU can run in one of two modes: user and kernel

*when in user mode, the OS part of virtual memory is inaccessible

*when in kernel mode, all of virtual memory is accessible

e certain instructions only legal in kernel mode
* page table entries have protection flag (user or kernel)

* attempting to access a kernel page while in user mode causes fault
e special instructions for switching between user and kernel modes
Translation

boolean isValid;
boolean isKernel;
int pfn;

int translate (int va) {
intvpn =va>>> 12; 1
int offset = va & Oxfff;
if (pte[vpn].isValid && (isKernelMode || !pte[vpn].isKernel))
return pte[vpnl.pfn << 12 | offset;
else
throw new lllegalAddressException (va);

}

class PageTableEntry {

Question Demand Paging ot %< Demand Paging o | [==4<] Context Switch
Consider this page table =, Key Idea swap || |= ||| » Virtual vs Physical Memory Size | | |~ %3j=———/| + A context switch is
0x80000007 * some application data is not in memory t— . . —
0x80000321 « transer from disk to memory, only when noeded wap || [e—— VM can be even larger th'an available [Cowap || |——— switching between threads from different processes
0x8000006b PM with demand paging! e— « each process has a private address space and thus its own page table
0x8000005a Page Table —))
8§38888888 « only stores entries for pages that are in memory Page Replacement — |mp|ement|ng a context switch
* pages that are only on disk are marked invalid ® pages can now be removed from | « change PTBR (page table base register) to point to new process’s page table
’;accest to l:on-resment page causes a page-fault interrupt memory, transparent to program — e « switch threads (save regs, switch stacks, restore regs)
Is 0x43a0 a valid virtual address and if so what is the age Frau * a replacement algorithm choose which - i i
di hvsical add) * is an exception raised by the CPU pages should be resident and swaps out — Context Switch vs Thread Switch
corrésponding physical address: * when a virtual address is invalid others * changing page tables can be considerably slower than just changing threads
*(A) Not valid « an exception is just like an interrupt, but generated by CPU not 10 device e - mainly because caching techniques used to make translation fast
* (B) 0x43a0 * page fault handler runs each time a page fault occurs - many pages may need reloading from disk because of demand paging
+(C) 0x5a3a0 Memory Map
* a second data structure managed by the OS . .
° (D) 0x7320 « divides virtual address space into regions, each mapped to a file h (|0tS more on caChmg in CPSC 31 3!)
* (E) 0x3a0 « page-fault interrupt handler checks to see if faulted page is mapped
« if so, gets page from disk, update Page Table and restart faulted instruction
Hardware Enforced Encapsulation The Operating System = |——| | Hardware Encapsulation and VM Inter-Process Communication
Goal The operating system is — Hardware) With one process
» define a set of interfaces (APIs) whose implementations are protected * a C/assembly program —_— |m—m— * mode register (user or kernel) = boolean iskernelMode; » threads communicate through shared memory

Different processes do not share memory
*they can not communicate in the same way

IPC

* basic mechanism is send and receive unformatted messages
*a message is an array of bytes
* sender and receiver have named endpoints (e.g., socket or port)
* operating system provides the glue

- the OS can access every process's memory

- it copies from sender message and into receiver’s memory
e what is send/receive not like?
*what is send/receive like?

Summary

Process

* a program execution

* a private virtual address space and a set of threads

* private address space required for static address allocation and isolation
Virtual Address Space

* a mapping from virtual addresses to physical memory addresses

* programs use virtual addresses

* the MMU translates them to physical address used by the memory hardware
Paging

* a way to implement address space translation

« divide virtual address space into small, fixed sized virtual page frames

* page table stores base physical address of every virtual page frame

* page table is indexed by virtual page frame number

* some virtual page frames have no physical page mapping

» some of these get data on demand from disk

Address Space Translation Tradeoffs

Single, variable-size, non-expandable segment

e internal fragmentation of segment due to sparse address use

Multiple, variable-size, non-expandable segments

« internal fragmentation of segments when size isn’t known statically
 external fragmentation of memory because segments are variable size
*moving segments would resolve fragmentation, but moving is costly
Expandable segments

* expansion must by physically contiguous, but there may not be room
 external fragmentation of memory requires moving segments to make room
Multiple, fixed-size, non-expandable segments

¢ called pages

* need to be small to avoid internal fragmentation, so there are many of them
e since there are many, need indexed lookup instead of search

