
CPSC 213
Introduction to Computer Systems

Unit 2d

Virtual Memory
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Reading

‣Companion
• 5

‣Text 
• Physical and Virtual Addressing, Address Spaces, Page Tables, Page Hits, 

Page Faults

• 2ed: 9.1-9.2, 9.3.2-9.3.4 

• 1ed: 10.1-10.2, 10.3.2-10.3.4

2

Multiple Concurrent Program Executions

‣So far we have
• a single program

• multiple threads

‣Allowing threads from different program executions
• we often have more than one thing we want to do at once(ish)

• threads spend a lot of time blocked, allowing other threads to run

• but, often there aren’t enough threads in one program to fill all the gaps

‣What is a program execution
• an instance of a program running with its own state stored in memory

• compiler-assigned addresses for all static memory state (globals, code etc.)

• security and failure semantics suggest memory isolation for each execution

‣But, we have a problem
• there is only one memory shared by all programs ...
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Physical Address Space Collisions 

‣each program has assumed it is free to read/write 
anywhere in memory

‣doesn’t work when multiple programs run at once

‣synchronization does not solve problem
• it’s a problem through the whole program

• not a short critical section with deliberate use of shared memory to 
communicate between threads

ld $0x1000, r2
ld $3, r3
st r3, (r2)

ld $0x1000, r4
ld $42, r5
st r5, (r4)

0x1000 42? 3?
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Virtual Memory

‣Virtual Address Space
• an abstraction of the physical address space of main (i.e., physical) memory

• programs access memory using virtual addresses

• hardware translates virtual address to physical memory addresses

‣Process
• a program execution with a private virtual address space

• associated with authenticated user for access control & resource accounting

• running a program with 1 or more threads

‣MMU
• memory management unit

• the hardware that translates virtual address to physical address

• performs this translation on every memory access by program
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Virtual Address Translation 

‣each program uses the same virtual address, but they map 
to different physical addresses

ld $0x1000, r2
ld $3, r3
st r3, (r2)

ld $0x1000, r4
ld $42, r5
st r5, (r4)

PA:  0x5000 3

VA: 0x1000

PA:  0x9000 42

VA: 0x1000
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Implementing the MMU

‣Let's think of this in the simulator ...
• introduce a class to simulate the MMU hardware

• currentAddressSpace is a hardware register

• the address space performs virtual-to-physical address translation

class MMU extends MainMemory {
  byte []      physicalMemory;
  AddressSpace currentAddressSpace;
  
  void setAddressSpace (AddressSpace* as);
  
  byte readByte (int va) {
    int pa = currentAddressSpace.translate (va);
    return physicalMemory.read (pa);
  }
}
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Implementing Address Translation

‣Goal
• translate any virtual address to a unique physical address (or none)

• fast and efficient hardware implementation

‣Let's look at a couple of alternatives ...

class MMU extends MainMemory {
  byte []      physicalMemory;
  AddressSpace currentAddressSpace;
  
  void setAddressSpace (AddressSpace* as);
  
  byte readByte (int va) {
    int pa = currentAddressSpace.translate (va);
    return physicalMemory.read (pa);
  }
}
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Base and Bounds

‣An address space is
• a single, variable-size, non-expandable chunk of physical memory

• named by its base physical address and its length

‣As a class in the simulator

‣Problems

class AddressSpace {
  int baseVA, basePA, bounds;
  
  int translate (int va) {
    int offset = va - baseVA;
    if (offset < 0 || offset > bounds)
      throw new IllegalAddressException ();
    return basePA + offset;
  }
}
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But, Address Space Use May Be Sparse

‣ Issue
• the address space of a program execution is divided into regions

• for example: code, globals, heap, shared-libraries and stack

• there are large gaps of unused address space between these regions

‣ Problem
• a single base-and-bounds mapping from virtual to physical addresses

• means that gaps in virtual address space will waste physical memory

• this is the Internal Fragmentation problem

‣ Solution
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Segmentation

‣ An address space is
• a set of segments

‣ A segment is
• a single, variable-size, non-expandable chunk of physical memory

• named by its base virtual address, physical address and length

‣ Implementation in Simulator

‣ Problem

class AddressSpace {
  Segment segment[];
  
  int translate (int va) {
    for (int i=0; i<segments.length; i++) {
      int offset = va - segment[i].baseVA;
      if (offset >= 0 && offset < segment[i].bounds) {
        pa = segment[i].basePA + offset;
        return pa;
      }
    }
    throw new IllegalAddressException (va);
  }}
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But, Memory Use is Not Known Statically

‣ Issue
• segments are not expandable; their size is static

• some segments such as stack and heap change size dynamically

‣ Problem
• segment size is chosen when segment is created

• too large and internal fragmentation wastes memory

• too small and stack or heap restricted

‣ Solution
• allow segments to expand?

Wasted 
Physical 
Memory

Broken 
Program

OR
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But, There May Be No Room to Expand

‣ Issue
• segments are contiguous chunks of physical memory

• a segment can only expand to fill space between it and the next segment

‣Problem
• there is no guarantee there will be room to expand a segment

• the available memory space is not where we want it (i.e., adjacent to segment)

• this is the External Fragmentation problem

‣Solution

Maybe 
Some 

Room to 
Expand

But, Now 
We’re 
Stuck
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But, Moving Segments is Expensive

‣ Issue
• if there is space in memory to store expanding segment, but not where it is

• could move expanding segment or other segments to make room

• external fragmentation is resolved by moving things to consolidate free space

‣Problem
• moving is possible, but expensive

• to move a segment, all of its data must be copied

• segments are large and memory copying is expensive

Maybe 
Some 

Room to 
Expand

Move 
Other 

Segments 
to Make 
Room
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Expand Segments by Adding Segments

‣What we know
• segments should be non-expandable

• size can not be effectively determined statically 

‣ Idea
• instead of expanding a segment

• make a new one that is adjacent virtually, but not physically

‣Problem
• oh no!  another problem!  what is it?  why does it occur?

Allocate a 
New 

Segment

virtual addresses  m ... n-1

virtual addresses  n ... p-1
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Eliminating External Fragmentation

‣ The problem with what we are doing is
• allocating variable size segments leads to external fragmentation of memory

• this is an inherent problem with variable-size allocation

‣What about fixed sized allocation
• could we make every segment the same size?

• this eliminates external fragmentation

• but, if we make segments too big, we’ll get internal fragmentation

• so, they need to be fairly small and so we’ll have lots of them

‣ Problem

16



Translation with Many Segments

‣ What is wrong with this approach if there are many segments?

‣ Now what?
• is there another way to locate the segment, when segments are fixed size?

class AddressSpace {
  Segment segment[];
  
  int translate (int va) {
    for (int i=0; i<segments.length; i++) {
      int offset = va - segment[i].baseVA;
      if (offset > 0 && offset < segment[i].bounds) {
        pa = segment[i].basePA + offset;
        return pa;
      }
    }
    throw new IllegalAddressException (va);
  }}
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Paging

‣Key Idea
• Address Space is divided into set of fixed-size segments called pages

• number pages in virtual address order

• page number = virtual address / page size

‣Page Table
• indexed by virtual page number (vpn)

• stores base physical address (actually address / page size (pfn) to save space)

• stores valid flag, because some segment numbers may be unused
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‣New terminology
• page	 	 a small, fixed-sized (4-KB) segment

• page table	virtual-to-physical translation table

• pte		 	 page table entry

• vpn		 	 virtual page number

• pfn		 	 physical page frame number

• offset	 	 byte offset of address from beginning of page

‣Address Translation using a Page Table

class AddressSpace {
  PageTableEntry pte[];
  
  int translate (int va) {
    int vpn    = va / PAGE_SIZE;
    int offset = va % PAGE_SIZE;
    if (pte[vpn].isValid)
      return pte[vpn].pfn * PAGE_SIZE + offset;
    else 
      throw new IllegalAddressException (va);
  }}

class PageTableEntry {
  boolean isValid;
  int     pfn;
}
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Address Translation

20 bits (5 hexits)

va: 32 bit address 031

12 bits
(3 hexits)

Page Table
(~4MB for 220 ptes)

pte[vpn] = pfn
pa

Page (4KB)

vpn offset

int translate (int va) {
    int vpn    = va >>> 12;
    int offset = va & 0xfff;
    if (pte[vpn].isValid)
      return pte[vpn].pfn << 12 | offset;
    

‣ The bit-shifty version
• assume that page size is 4-KB = 4096 = 212

• assume addresses are 32 bits

• then, vpn and pfn are 20 bits and offset is 12 bits

• pte is pfn plus valid bit, so 21 bits or so, say 4 bytes

ptbr
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‣Consider this page table

‣ Is 0x43a0 a valid virtual address and if so what is the 
corresponding physical address?
• (A) Not valid

• (B) 0x43a0

• (C) 0x5a3a0

• (D) 0x73a0

• (E) 0x3a0

Question

0x00000000
0x80000007
0x80000321
0x8000006b
0x8000005a
0x80000040
0x00000000
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Demand Paging
‣ Key Idea

• some application data is not in memory

• transfer from disk to memory, only when needed

‣ Page Table
• only stores entries for pages that are in memory

• pages that are only on disk are marked invalid

• access to non-resident page causes a page-fault interrupt

‣ Page Fault
• is an exception raised by the CPU

• when a virtual address is invalid

• an exception is just like an interrupt, but generated by CPU not IO device

• page fault handler runs each time a page fault occurs

‣ Memory Map
• a second data structure managed by the OS

• divides virtual address space into regions, each mapped to a file

• page-fault interrupt handler checks to see if faulted page is mapped

• if so, gets page from disk, update Page Table and restart faulted instruction

a.out

swap

swap
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Demand Paging

‣  Virtual vs Physical Memory Size
• VM can be even larger than available 

PM with demand paging!

‣Page Replacement
• pages can now be removed from 

memory, transparent to program

• a replacement algorithm choose which 
pages should be resident and swaps out 
others

a.out

swap

swap

swap
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Context Switch

‣A context switch is
• switching between threads from different processes

• each process has a private address space and thus its own page table

‣ Implementing a context switch
• change PTBR (page table base register) to point to new process’s page table

• switch threads (save regs, switch stacks, restore regs)

‣Context Switch vs Thread Switch
• changing page tables can be considerably slower than just changing threads

- mainly because caching techniques used to make translation fast

- many pages may need reloading from disk because of demand paging

- (lots more on caching in CPSC 313!)
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Hardware Enforced Encapsulation

‣Goal
• define a set of interfaces (APIs) whose implementations are protected

• implementation code and data can only be accessed through interface

‣Obstacle
• can not use language protection without excluding languages like C

‣Use Hardware for Protection
• virtual memory already provides a way to protect memory

• data in one address space can not even be named by thread in another

• so, we’ve got the protected implementation part

• we’ll need to add the interface part
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The Operating System

‣The operating system is
• a C/assembly program 

• implements a set of abstractions for applications

• it encapsulates the implementation of these abstractions, including hardware

‣The Operating System’s Address Space
• a part of every application’s page table is reserved for the OS

• all code and data of OS is part of every page table (exact copies)

• and so the operating system is part of every application’s address space

‣Dual Protection Domains
• each address space splits into application and system protection domain

• CPU can run in one of two modes: user and kernel

• when in user mode, the OS part of virtual memory is inaccessible

• when in kernel mode, all of virtual memory is accessible
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Hardware Encapsulation and VM

‣Hardware
• mode register (user or kernel)

• certain instructions only legal in kernel mode

• page table entries have protection flag (user or kernel)

• attempting to access a kernel page while in user mode causes fault

• special instructions for switching between user and kernel modes

‣Translation

boolean isKernelMode;

int translate (int va) {
  int vpn    = va >>> 12;
  int offset = va & 0xfff;
  if (pte[vpn].isValid && (isKernelMode || !pte[vpn].isKernel))
    return pte[vpn].pfn << 12 | offset;
  else 
    throw new IllegalAddressException (va);
}

class PageTableEntry {
  boolean isValid;
  boolean isKernel;
  int     pfn;
}
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Inter-Process Communication

‣With one process
• threads communicate through shared memory

‣Different processes do not share memory
• they can not communicate in the same way

‣ IPC
• basic mechanism is send and receive unformatted messages

• a message is an array of bytes

• sender and receiver have named endpoints (e.g., socket or port)

• operating system provides the glue
- the OS can access every process's memory

- it copies from sender message and into receiver’s memory

• what is send/receive not like?

• what is send/receive like?
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Summary

‣ Process
• a program execution

• a private virtual address space and a set of threads

• private address space required for static address allocation and isolation

‣ Virtual Address Space
• a mapping from virtual addresses to physical memory addresses

• programs use virtual addresses

• the MMU translates them to physical address used by the memory hardware

‣ Paging
• a way to implement address space translation

• divide virtual address space into small, fixed sized virtual page frames

• page table stores base physical address of every virtual page frame

• page table is indexed by virtual page frame number

• some virtual page frames have no physical page mapping

• some of these get data on demand from disk
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Address Space Translation Tradeoffs

‣Single, variable-size, non-expandable segment
• internal fragmentation of segment due to sparse address use

‣Multiple, variable-size, non-expandable segments
• internal fragmentation of segments when size isn’t known statically

• external fragmentation of memory because segments are variable size

• moving segments would resolve fragmentation, but moving is costly

‣Expandable segments
• expansion must by physically contiguous, but there may not be room

• external fragmentation of memory requires moving segments to make room

‣Multiple, fixed-size, non-expandable segments
• called pages

• need to be small to avoid internal fragmentation, so there are many of them

• since there are many, need indexed lookup instead of search
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