Introduction to Computer Systems

Unit 2b
Virtual Processors

Reading

Text
2ed: 12.3
1ed: 13.3

The Virtual Processor

Originated with Edsger Dijkstra in the THE Operating System
in The Structure of the “THE” Multiprogramming System, 1968

“l had had extensive experience (dating back to 1958) in making basic software dealing
with real-time interrupts, and | knew by bitter experience that as a result of the
irreproducibility of the interrupt moments a program error could present itself
misleadingly like an occasional machine malfunctioning. As a result | was terribly
afraid. Having fears regarding the possibility of debugging, we decided to be as
careful as possible and, prevention being better than cure, to try to prevent nasty bugs
from entering the construction.

This decision, inspired by fear, is at the bottom of what I regard as the group's main
contribution to the art of system design.”
The Process (what we now call a Thread)
a single thread of synchronous execution of a program
the illusion of a single system such as the Simple Machine
can be stopped and restarted
stopped when waiting for an event (e.g., completion of an I/O operation)
restarted with the event fires
can co-exist with other processes sharing a single hardware processor
a scheduler multiplexes processes over processor
synchronization primitives are used to ensure mutual exclusion and for waiting and signalling

Thread

An abstraction for execution
looks to programmer like a sequential flow of execution, a private CPU
it can be stopped and started, it is sometimes running and sometimes not
the physical CPU thus now multiplexes multiple threads at different times

Creating and starting a thread foo

like an asynchronous procedure call ‘L i

starts a new thread of control to execute a procedure bar zot
Stopping and re-starting a thread \L

stopping a thread is called blocking

a blocked thread can be re-started (i.e., unblocked) join
Joining with a thread

blocks the calling thread until a target thread completes

returns the return value of the target-thread’s starting procedure¢

turns thread create back into a synchronous procedure call bat

Revisiting the Disk Read

A program that reads a block from disk
want the disk read to be synchronous

(buf, siz, blkNo); // read siz bytes at blkNo into buf
(buf, siz); // now do something with the block

but, it is asynchronous so we have this

(buf, siz, blkNo,);
doSomethingElse ();
As a timeline
two processors
two separate computations

do something else while waiting

A A 4

Synchronous Disk Read using Threads

do something else while waiting
. o~ - & e -

T
CPU r 4

Create two threads that CPU runs, one at a time
one for
one for doSomethingElse

lllusion of synchrony
disk read blocks while waiting for disk to complete
CPU runs other thread(s) while first thread is blocked
disk interrupt restarts the blocked read
asyncRead (buf, siz, blkNo);

waitForlinterrupt ();
nowHaveBlock (buf, siz); }

interruptHandler() {
signalBlockedThread();

Threads in Java

Create a procedure that can be executed by a thread
build a class that implements the Runnable interface
class ZotRunnable implements Runnable {
Integer result, arg;
ZotRunnable (Integer anArg) {
arg = anArg;

}
public void run() {
result = zot (arg);

}

Create a thread to execute the procedure and start it

ZotRunnable zot = new ZotRunnable (0);
Thread t = new Thread (zot);
t.start();

Later join with thread to get zot’s return value

Integer result;

try {
tjoin();
result = zot.result;

} catch (InterruptedException ie) {
result = null;

}

So that the entire calling sequence is

foo
foo();
ZotRunnable zot = new ZotRunnable (0);
Thread t = new Thread (zot); bar zot

t.start();
bar(); ‘L
Integer result = null;
try { join
t.join();
result = zot.result;
} catch (InterruptedException ie) {

{Jat(); ¢

bat

Executor Services in Java

Create an Executor Service once at beginning of program
to manage asynchronous calls in a pool of threads (here limited to 2)

ExecutorService ex = new ScheduledThreadPoolExecutor (2);

Create a procedure that can be submitted to this Service
build a class that implements the Callable interface

class ZotCallable implements Callable<Integer> {
Integer arg;
ZotCallable (Integer anArg) {
arg = anArg;

public Integer call () {
return zot (arg);

Schedule execution of the procedure
declare a Future variable to store the procedure’s result
submit procedure’s callable object to the Executor Service

Future<Integer> resultFuture = ex.submit (new ZotCallable (0));

Then later get value of result future, blocking if necessary

Integer result = null;
try {
result = resultFuture.get(); // join
} catch (InterruptedException ie) {
} catch (ExecutionException ee) {}

Shutdown Executor Service before program terminates

program keeps running after main returns until executor is shutdown

ex.shutdown();

So that the entire calling sequence is

ExecutorService ex = new ScheduledThreadPoolExecutor (2);

foo();

Future<Integer> resultFuture = ex.submit (new ZotCallable (0));
bar();

Integer result = null;

try {

result = resultFuture.get(); // join
} catch (InterruptedException ie) {
} catch (ExecutionException ee) {}
bat();
ex.shutdown ();

foo __)
zot

bar

4

join

4

bat

Comparing Java’s Alternatives

Focusing on asynchronous call

ZotRunnable zot = new ZotRunnable (0);

Thread t = new Thread (zot);
t.start();
Integer result = null;
try {
t.join();

result = zot.result;
} catch (InterruptedException ie) {

Future<Integer> resultFuture = ex.submit (new ZotCallable (0));
Integer result = null;
try {
result = resultFuture.get(); // join
} catch (InterruptedException ie) {
} catch (ExecutionException ee) {} // if zot() threw an exception

Advantages of Executor Service
better management of result returned or exception thrown by asynchronous call
precise thread management abstracted from application code

12

UThread: A Simple Thread System for C

The UThread Interface file (uthread.h)

struct uthread_TCB;
typedef struct uthread_TCB uthread_t;

void uthread_init (int num_processors);

uthread_t* uthread_create (void* (*star_proc)(void*), void* start_arg);
void uthread_yield ();

void* uthread_join (uthread_t* thread);

void uthread_detach (uthread_t* thread);

uthread_t* uthread_self ();

Explained
uthread_t is the datatype of a thread control block
uthread_init is called once to initialize the thread system

uthread_create create and start a thread to run specified procedure

uthread_yield temporarily stop current thread if other threads waiting
uthread_join join calling thread with specified other thread
uthread_detach

uthread_self

indicate no thread will join specified thread
a pointer to the TCB of the current thread

Example Program using UThreads

void ping () {
inti;
for (i=0; i<100; i++) {
printf ("ping %d\n",i); fflush (stdout);
uthread_yield ();
}
}

void pong () {
inti;
for (i=0; i<100; i++) {
printf ("pong %d\n",i); fflush (stdout);
uthread_yield ();
}
}

void ping_pong () {
uthread_init (1);
uthread_create (ping, 0);
uthread_create (pong, 0);
while (1)
uthread_yield ();
}

Implement Threads: Some Questions

The key new thing is blocking and unblocking
what does it mean to stop a thread?
what happens to the thread?
what happens to the physical processor?

What data structures do we need

What basic operations are required

Implementing UThreads: Data Structures

Thread State
running: register file and runtime stack
stopped: Thread Control Block and runtime stack
Thread-Control Block (TCB)
thread status: (NASCENT, RUNNING, RUNNABLE, BLOCKED, or DEAD)
pointers to thread’s stack base and top of its stack
scheduling parameters such as priority, quantum, pre-emptability etc.
Ready Queue
list of TCB's of all RUNNABLE threads
One or more Blocked Queues
list of TCB’s of BLOCKED threads

Thread Data Structure Diagram

Thread Status DFA

Implementing Threads: Thread Switch

Thread Switch

c’ea,e Schedule Goal
. oa " "
Ready Queue Thread Control Stacks . g ch (T To) th g . Thread Control Stacks Register File
Blocks i U * implement a procedure switc a, Tb) that stops Ta and starts To Blocks
5 \(‘e\ ;) * Ta calls switch, but it returns to T —— (]
O TCBa € Nascent Running * example ... TCBa < o]
O RUNNING f .:.
R
equires o]
gJ g) * saving Ta’s processor state and setting processor state to Ty's saved state :_
&
TCBb Runnable Schedu\e ;% 3 * state is just registers and registers can be saved and restored to/from stack TCBb ¥ [— E_
RUNNABLE > ” - % * thread-control block has pointer to top of stack for each thread D_
o 4 N —
Blocked ® Implementation o L
Unblock DOKS « save all registers to stack
TCBc * : ’ * save stack pointer to To’s TCB 1. Save all registers to A’s stack
RUNNABLE | / 3 * set stack pointer to stack pointer in To’s TCB 2. Save stack top in A’s TCB
© Freed Join or Detach Dead « restore registers from stack 3. Restore B’s stack top to stack-pointer register
i 4. Restore registers from B’s stack
Example Code for Thread Switch Implementing Thread Yield Question Multiple Processors
asm volatile ("pushq %%rbx\n\t" "popfq\n\t" Thread Yield The uthread_switch procedure saves the from thread’s Processors are
"pushq %%rcx\n\t" "popq %%r15\n\t" . . B
"pushq %%rdx\n\t" "popq %%r14\n\t" e gets next runnable thread from ready queue (if any) registers to the stack, switches to the to thread’s stack * the physical / hardware resource that runs threads
ugﬂ:m %:Z'i\\';\\ttu --Sggg ;ﬁﬁgt:& * puts current thread on ready queue pointer and restores its registers from the stack, but what * a system can have more than one
"pushq %%rbp\n\t" "popg %%ril\n\t" o sWi does it do with the program counter? ;
"pushq %%r8\n\t" "popq Hrl0\n\t" switches to next thread W e from i P (fg o to he <tack and rest Uni-Processor System
"pushg %%ro\n\t" "popq %%ro\n\t" Example Code J saves the from thread’s program counter to the stack and restores i
pusha 6rLO\m\t .popq krE\n\t" | P the to thread’s program counter from the stack. a single progessor runs all threads
pushq %%r1l\n\t popq %%rbp\n\t)) X . *no two threads run at the same time
"pushq %%r12\n\t" "popq %%rdi\n\t" void uthread_yield () { * (B) It saves the from thread’s program counter to its thread control block. S
"pushq %%r13\n\t" "popq %%rsi\n\t" uthread_t* to_thread = dequeue (&ready_queue); Multi-Processor System
"pushq %%r14\n\t" "popq %%rdx\n\t" uthread_t* from_thread = uthread_cur_thread 0 *(C) It does not need to change the program counter because the from and Yy
"pushq %%r15\n\t" "popq %%rex\n\t" if (to_thread) { to threads PCs are already saved on the stack before switch is called. * multiple processors run the threads
"pushfa e " %%rbx\n\t" m _ - .)) .
oy B m—— b, (kfrro;i:;_p) erf’g—et:‘ere(;‘:e:dsja;e_u-ersl;il::]“’?:iéd). * (D) It jumps to the to thread’s PC value. *two threads can be running at the same time
“mova E""%m*‘"“] - o (to_sp)); }Uthread_switch (to_thread); *(E) I am not sure. More about this later, but we have a problem now ...
from_tcb->saved_sp l;_ rlsp] g } *how do we compute the value of cur_thread, the current thread’s TCB?
ris + to_tcb->saved_s
sl - 5P * we need this to yield the thread, for example, to place it on ready queue
*but, can’t use a global variable
Thread Private Data Thread Private Data Thread Scheduling Priority, Round Robin Scheduling Policy
Threads introduce need for another type of variable Thread Scheduling is Priorit:
yp Ready Queue Thread Control Stacks 9 riority ,
* a thread-private variable is a global variable private to a thread Blocks * the process of deciding when threads should run *is a number assigned to each thread
«like a local variable is private to a procedure activation _ S 5 = when there are more runnable threads than processors * thread with highest priority goes first
For example O TCBa ol € *involves a policy and a mechanism When choosing the next thread to run
O RUNNING . . . - -
e cur_thread, the address of the current thread’s activation frame Thread Scheduling Policy run the highest priority run.na.ble thread .
«It's a global variable to thread, but every thread has its own copy —0 «is the set of rules that determines which threads should be running * when threads are same priority, run thread that has waited the longest
Implementing Thread Private Data TCBb = Things you might consider when setting scheduling policy Implementing Thread Mechanism
» store Thread-private data in TCB RUNNABLE * do some threads have higher priority than others? ‘ orsa:lzte Befdfy ?ueue as a priority queue
o__ B i - highest priority firs
« store pointer to TCB at top of every stack * should threads get fair access to the processor? - FIFO (first-in-first-out) among threads of equal priority
« compute current stack top from stack pointer ‘/""0 * should threads be guaranteed to make progress? « priority queue: first-in-first out among equal-priority threads
- require that stack top address is aligned to stack size TCBc * do some operations have deadlines? Benefits
- stack top = r5 & ~(Stack Size - 1) Top of stack points to TCB RUNNABLE | / 3 « should one thread be able to pre-empt another?
where Thread-private data is - —
stored « if threads can be pre-empted, are there times when this shouldn’t happen?

Drawbacks and mitigation

Preemption

Preemption occurs when

* a “yield” is forced upon the current running thread

e current thread is stoped to allow another thread to run
Priority-based preemption

*when a thread is made runnable (e.g., created or unblocked)
«if it is higher priority than current-running thread, it preempts that thread
Quantum-based preemption

* each thread is assigned a runtime “quantum”

* thread is preempted at the end of its quantum

How long should quantum be?

« disadvantage of too short?

* disadvantage of too long?

* typical value is around 10 ms

How is quantum-based preemption implemented?

Implementing Quantum Preemption

Timer Device

= an I/0 controller connected to a clock

e interrupts processor at regular intervals

Timer Interrupt Handler

* compares the running time of current thread to its quantum
* preempts it if quantum has expired

How is running thread preempted

Real-Time Scheduling

Problem with round-robin, preemptive, priority scheduling
* some applications require threads to run at a certain time or certain interval
* but, what does round-robin guarantee and not guarantee?

Real-time Scheduling
¢ hard realtime — e.g., for controlling or monitoring devices
thread is guaranteed a regular timeslot and is given a time budget
- thread can not exceed its time budget

- thread will not be “admitted” to the run in the first place, unless its schedule can be
guaranteed

¢ soft realtime - e.g., for media streaming
- option 1: over-provision and use round-robin

- option 2: thread expresses its scheduling needs, scheduler tries its best, but no guarantee

Summary

Thread

* synchronous “thread” of control in a program

e virtual processor that can be stopped and started

* threads are executed by real processor one at a time

Threads hide asynchrony

* by stopping to wait for interrupt/event, but freeing CPU to do other things
Thread state

* when running: stack and machine registers (register file etc.)

* when stopped: Thread Control Block stores stack pointer, stack stores state
Round-robin, preemptive, priority thread scheduling

* lower priority thread preempted by higher

* thread preempted when its quantum expires

* equal-priority threads get fair share of processor, in round-robin fashion

