Introduction to Computer Systems

Unit 1d
Static Control Flow

Reading

Companion
2.7.1-2.7.3,2.7.5-2.7.6

Textbook
3.6.1-3.6.5

Control Flow

The flow of control is

the sequence of instruction executions performed by a program
every program execution can be described by such a linear sequence

Controlling flow in languages like Java

LOOPS (s5-loop)

In Java public class Foo {
static int s = O;
static int I;

static int a[] = new int[10];

static void foo () {
for (i=0; i<10; i++)
s += ali];
}
}

In C

int s=0;
Int 1;
int a[] ={2,4,6,8,10,12,14,16,18,20};

void foo () {
for (i=0; i<10; i++)
s += alil;
}

Implement loops in machine

int s=0;
Int 1;
int a[] ={2,4,6,8,10,12,14,16,18,20};

void foo () {
for (i=0; i<10; i++)
s += alil;

}

Can we implement this loop with the existing ISA?

Loop unrolling

Using array syntax

int s=0;
int i;
int a[10] = {2,4,6,8,10,12,14,16,18,20};
void foo () {
i = 0;
s += ali];
I+ 4+

s += al[il;
I+ +;

s += ali];
I+ +;

}

Using pointer-arithmetic syntax for access to a?
Will this technique generalize

will it work for all loops? why or why not?

Control-Flow ISA Extensions

Conditional branches

goto <address> if <condition>

Options for evaluating condition
unconditional
conditional based on value of a register (==0, >0 etc.)

goto <address> if <register> <condition> 0

conditional check result of last executed ALU instruction

goto <address> if last ALU result <condition> 0

Specifying target address
absolute 32-bit address

this requires a 6 byte instruction, which means jumps have high overhead
is this a serious problem? how would you decide?

are jumps for for/while/if etc. different from jumps for procedure call?

PC Relative Addressing

Motivation

jumps are common and so we want to make them as fast as possible
small instructions are faster than large ones, so make some jumps be two bytes

Observation
some jumps such as for/while/if etc. normally jump to a nearby instruction
so the jump distance can be described by a small number that could fit in a byte

PC Relative Addressing

specifies jump target as a delta from address of current instruction (actually next)
INn the execute stage pc register stores the address of next sequential instruction
the pc-relative jump delta is applied to the value of the pc register

jumping with a delta of 0 jumps to the next instruction

jump instructions that use pc-relative addressing are called branches

Absolute Addressing
specifies jJump target using full 32-bit address
use when the jump distance too large to fit in a byte

ISA for Static Control Flow @par 1)

ISA requirement (apparently)

at least one PC-relative jump

specify relative distance using real distance /2 — why?

at least one absolute jumps

some conditional jumps (at least = and > 0)

make these PC-relative — why?

New instructions (so far)

Name Semantics Assembly Machine
branch pc « (a=pc+00*2) br a 8-00
branch if equal pc «+ (a=pc+00*2) if r[c]== begrc,a 9coo
branch if greater pc + (a=pc+00*2) if r[c]>0 bgt rc, a acoo
jump pc < a (a specified as label) ja b--- aaaaaaaa

jump assembly uses label, not direct hex number
PC-relative count starts from next instruction, after fetch increments PC

Implementing for loops s-ioop)

for (i=0; i<10; i++)
s += ali];

General form

in C and Java

for (<init>; <continue-condition>; <step>) <statement-block>

pseudo-code template

<init>
loop: if not <continue-condition> goto end_loop
<statement-block>
<step>
goto loop
end_loop:

10

This example

pseudo code template

i=0
loop: if not (i<10) goto end_loop
s+=ali]
i++
goto loop
end_loop:

ISA suggest two transformations
only conditional branches we have compared to 0, not 10

no need to store i and s in memory in each loop iteration, so use temp_ to indicate this

temp_i=0
temp _s=0
loop: temp_t=temp_i-9
if temp_t>0 goto end_loop
temp_s+=a[temp_i]
temp_i++
goto loop
end_loop: s=temp_s
I=temp_lI

11

temp_i=0
temp_s=0
loop: temp_t=temp_i-9
if temp_t>0 goto end_loop
temp_s+=a[temp_i]

temp_i++
goto loop

end_loop: s=temp_s
I=temp_lI

assembly code Assume that all variables are global variables

Id $0xO0, rO #r0=temp_i=0
Id $a,rl # rl = address of a[0]
Id $0xO0, r2 #r2=temp s=0
Id $Oxfffffff7, r4 #r4 = -9

loop: mov rO0, r5 #r5 =temp_i
add r4, r5 #r5 = temp_i-9

bgt r5, end_loop # if temp_i>9 goto +4
Id (r1, rO, 4), r3 #r3 = a[temp_i]

add r3, r2 # temp_s += a[temp_i]
inc r0 # temp_i++
br loop # goto -7

end_loop: Id $s,rl #rl = address of s
st r2, 0x0(rl) #s =temp_s

st r0, Ox4(rl) #i=temp_i

Two's Complement: Reminder

unsigned
all possible values interpreted as positive numbers
byte (8 bits) O 255

0x0 Oxff
sighed: two's complement

the first half of the numbers are positive, the second half are negative

start at 0, go to top positive value, "wrap around” to most negative value,
end up at -1

-128 -1 0 +127

0x80 Oxff 0Ox0 Ox7f

13

Two's Complement: Reminder

unsigned
all possible values interpreted as positive numbers
int (32 bits) U 4,294,967,295

0x0 OxfFFfffff
sighed: two's complement

the first half of the numbers are positive, the second half are negative

start at 0, go to top positive value, "wrap around” to most negative value,
end up at -1

2.147,483,648 -1 0 2.147,483,647

0x80000000 OxffffffOx0 Ox 7 ftttttt

14

Two's Complement and Sign Extension

normally, pad with 0s when extending to larger size
0x8b byte (139) becomes 0x0000008b int (139)

but that would change value for negative 2's comp:
Oxff byte (-1) should not be 0x000000ff int (255)

so: pad with Fs with negative numbers in 2's comp:
Oxff byte (-1) becomes Oxffffffff int (-1)
In binary: padding with 1, not O

reminder: why do all this?

add/subtract works without checking if number positive or negative

15

Implementing if-then-else «se-if

if (a>b)
max = a;
else
max = b;

General form

in Java and C

if <condition> <then-statements> else <else-statements>

pseudo-code template

temp_c = not <condition>
goto then if (temp_c==0)
else: <else-statements>
goto end_if
then: <then-statements>
end_if:

16

This example

pseudo-code template

temp_a=a
temp_b=b
temp_c=temp_a-temp_b
goto then if (temp_c>0)
else: temp_max=temp_b
goto end_if
then: temp_max=temp_a
end_if: max=temp_max

assembly code

Id $a, rO #1r0 = &a

Ild 0xO0O(r0), rO #r0 =a

Id $b, rl #rl =&b

Ild OxO(rl), rl #rl=0Db

mov rl, r2 #r2=Db

not r2 #temp c=1!Db

inc r2 #temp c=-b

add rO, r2 # temp _c = a-b

bgt r2, then # if (a>b) goto +2
else: mov rl, r3 #temp_max =b

br end_if # goto +1
then: mov rO0, r3 # temp_max = a
end_if: Id $max, r0 #r0 = &max

st r3, 0x0(rO) # max = temp_max

Static Procedure Calls

Code Examples se-static-call

public class A {
static void ping () {}

}

public class Foo {
static void foo () {
A.ping ();
}
}

Java

* a method is a sub-routine with a
name, arguments and local
scope

* method invocation causes the
sub-routine to run with values
bound to arguments and with a
possible result bound to the
Invocation

void ping () {}

void foo () {

ping (;
}

C

* a procedure is ...

* a procedure call is ...

19

Diagraming a Procedure Call

void foo () { void ping () {}

ping ();
}
Caller Callee
goto ping
J ping do whatever ping does

goto foo just after call to ping()
P7?7°7°°7

continue executing

Questions
How is RETURN implemented?

It’s a jump, but is the address a static property or a dynamic one?

20

Implementing Procedure Return

return address is

* the address the procedure jumps to when it completes

* the address of the instruction following the call that caused it to run
* a dynamic property of the program

questions

* how does procedure know the return address?
* how does it jump to a dynamic address?

21

saving the return address

only the caller knows the address
so the caller must save it before it makes the call

caller will save the return address in r6

there is a bit of a problem here if the callee makes a procedure call, more later ...

we need a new instruction to read the PC

we’ll call it gpc

jumping back to return address

we need new instruction to jump to an address stored in a register

callee can assume return address is in r6

22

ISA for Static Control Flow par 2

New requirements
read the value of the PC
jump to a dynamically determined target address

Complete new set of instructions

Name Semantics Assembly Machine
branch pc « (a==pc+pp*2) br a 8-pp
branch if equal | pc « (a==pc+pp*2) if r[c]==0 beq a 9cpp
branch if greater pc + (a==pc+pp*2) if r[c]>0 bgt a acpp
jump pc < a (a specified as label) ja b--- aaaaaaaa
get pc rld] « pc + (o==p*2) gpc $o,rd 6fpd
indirect jump pc ¢« r[t] + (o==pp*2) j o(rt) ctpp

jump assembly uses label, not direct hex number

23

Compiling Procedure Call / Return

void foo () {

ping (;
}
foo: gpc $6, r6 # r6 = pc of next instruction
j ping # goto ping ()

void ping () {}

ping: j (r6) # return

24

