Introduction to Computer Systems

Unit 1c
Instance Variables and Dynamic Allocation

Reading

Companion
2.4.4-2.4.6

Textbook

2ed: 3.9.1, 9.9.1-9.9.2, 3.10
1led: 3.9.1, 10.9.1-10.9.2, 3.11

Instance Variables

i Class X L-
{ static int i; L
L intj; 4 b

il Object instance of X |
b ointj; [] &

Variables that are an instance of a class or struct

* created dynamically
* many instances of the same variable can co-exist

Javavs C

e Java: objects are instances of non-static variables of a class
o (C: structs are named variable groups, instance is also called a struct

Accessing an instance variable
* requires a reference to a particular object (pointer to a struct)
* then variable name chooses a variable in that object (struct)

StFUCtS iﬂ C (S4-instance-var)

struct D { class D {
!nt e; ~ publ?c ?nt e;
int f; ~J public int f;
}; §
A struct is a

collection of variables of arbitrary type, allocated and accessed together

Declaration

similar to declaring a Java class without methods

name is “struct” plus name provided by programer
static struct D dO:

dynamic struct D* d1;

Access
static d0.e = dO.f:

dynamic dl->e =dl->f;

Struct Allocation

struct D {
int e;
int f;
};

Static structs are allocated by the compiler
Static Memory Layout

0x1000: value of dO0.e|

i<Struct D do;}

Dynamic structs are allocated at runtime

the variable that stores the struct pointer may be static or dynamic

the struct itself is allocated when the program calls malloc
Static Memory Layout

fstruct D* d1;

° runtime allocatlon of dynamlc struct

v0|d foo () {

I d1 = (struct D*) malloc (sizeof(struct D));
4 i

e assume that this code allocates the struct at address 0x2000

Struct Access

struct D {
int e;
int f;
};

Static and dynamic differ by an extra memory access

dynamic structs have dynamic address that must be read from memory
In both cases the offset to variable from base of struct is static

M[Ox1000] « m[0Ox1004] M[M[Ox1000]+0] « m[m[Ox1000]+4]

r[0] <« O0x1000 r[0] « O0x1000
r[1] <« m[r[O]] load d1
r[1] <« m]r[0]+4] r[2] <« m[r[1]+4]

m[r[0]] « r[1] mlr[1]] « r[2]

r[0] « 0x1000 r[0] « 0x1000
r[l] <« m[r[0]] load d1
r[1] <« mi[r[0]+4] r[2] <+« mir[1]+4]
m[r[0]] « r[1] m[r[1]] « r[2]
ld $0x1000, rO # rO = address of dO ld $0x1000, rO # rO = address of d1
Id 4(r0), r1 #r0 = dO.f Id (r0), r1 #rl =d1
strl, (r0) # d0.e = dO.f Id 4(r1), r2 #r2 =dl->f

str2,(rl) #dl->e=dl->f

The revised load/store base plus offset instructions

dynamic base address in a register plus a static offset (displacement)

Id 4(r1), r2

The Revised Load-Store ISA

Machine format for base + offset

note that the offset will in our case always be a multiple of 4

also note that we only have a single hex digit in instruction to store it

and so, we will store offset / 4 in the instruction

The Revised ISA

Name Semantics Assembly Machine
load immediate r[d] « v Id $v, rd 0d-- vvvvvvvy
load base+offset r[d] « m[r[s]+(o=p*4)] Id o(rs), rd 1psd
load indexed rld] « mlr[s]+4*r[i]] Id (rs,ri,4), rd 2sid
store base+offset mir[d]+(o=p*4)] + r[s] st rs, o(rd) 3spd
store indexed mlr[d]+4*r[i]] < r[s] st rs, (rd,ri,4) 4sdi

Dynamic Allocation

Dynamic Allocation in C and Java

Programs can allocate memory dynamically

allocation reserves a range of memory for a purpose
In Java, instances of classes are allocated by the new statement
in C, byte ranges are allocated by call to malloc function

Wise management of memory requires deallocation
memory is a scare resource
deallocation frees previously allocated memory for later re-use
Java and C take different approaches to deallocation

How is memory deallocated in Java?

Deallocation in C
programs must explicitly deallocate memory by calling the free function
free frees the memory immediately, with no check to see if its still in use

11

Considering Explicit Delete

Let's look at this example

struct MBuf * receive () {
struct MBuf* mBuf = (struct MBuf*) malloc (sizeof (struct MBuf));

return mBuf;

}

void foo () {
struct MBuf* mb = receive ();
bar (mb);
free (mb);

}

s it safe to free mb where it is freed?
what bad thing can happen?

12

Let's extend the example to see

what might happen in bar()
and why a subsequent call to bat() would expose a serious bug

struct MBuf * receive () {
struct MBuf* mBuf = (struct MBuf*) malloc (sizeof (struct MBuf));

return mBuf;

}

void foo () {
struct MBuf* mb = receive ();
bar (mb);
free (mb);

5
void MBuf* aMB;

void bar (MBuf* mb) {
aMB = mb:;
}

void bat () { This statement writes to
: aMB->x = 0; Repemesaeeme= unallocated (or re-allocated) memory.

13

Dangling Pointers

A dangling pointer is
* a pointer to an object that has been freed
* could point to unallocated memory or to another object

Why they are a problem
* program thinks its writing to object of type X, but isn’t
* it may be writing to an object of type Y, consider this sequence of events

(1) Boefree o (2) ftrre:

"”ﬁdanghng
pointer

OXZOOO: a struct mbuf 10x2000: free memory ~ §<

(3) After another malloc
[aMB: 0x2000 (memmmegnes

f dangling pointer that is
s §really dangerous

02000 another thing | =

14

Avoiding Dangling Pointers in C

Understand the problem

when allocation and free appear in different places in your code

for example, when a procedure returns a pointer to something it allocates

Avoid the problem cases, if possible
restrict dynamic allocation/free to single procedure, if possible
don’t write procedures that return pointers, if possible
use local variables instead, where possible

we’ll see later that local variables are automatically allocated on call and freed on return

Engineer for memory management, if necessary

define rules for which procedure is responsible for deallocation, if possible
iImplement explicit reference counting if multiple potential deallocators
define rules for which pointers can be stored in data structures

use coding conventions and documentation to ensure rules are followed

15

Avoiding dynamic allocation

If procedure returns value of dynamically allocated object

allocate that object in caller and pass pointer to it to callee
good if caller can allocate on stack or can do both malloc / free itself

struct MBuf * receive () {
struct MBuf* mBuf = (struct MBuf*) malloc (sizeof (struct MBuf));

return mBuf;

}

void foo () {
struct MBuf* mb = receive ();
bar (mb);

free (mb); void receive (struct MBuf* mBuf) {

§
J

void foo () {
struct MBuf mb:;

receive (&mb);
bar (mb);
}

16

Reference Counting

Use reference counting to track object use

any procedure that stores a reference increments the count
any procedure that discards a reference decrements the count

the object is freed when count goes to zero

struct MBuf* malloc_Mbuf () {
struct MBuf* mb = (struct MBuf* mb) malloc (sizeof (struct MBuf));

mb->ref count = 1;
return mb:;

}

void keep_reference (struct MBuf* mb) {
mb->ref count ++;

}

void free_reference (struct MBuf* mb) {
mb->ref count --;
if (mb->ref _count==0)
free (mb);

}

17

The example code then uses reference counting like this

struct MBuf * receive () {
struct MBuf* mBuf = malloc_Mbuf ();

return mBuf;

}

void foo () {
struct MBuf* mb = receive ();
bar (mb);
free_reference (mb);

}
void MBuf* aMB = 0;

void bar (MBuf* mb) {
if (@MB = 0)
free_reference (aMB);
aMB = mb;
keep_reference (aMB);

}

18

Garbage Collection

In Java objects are deallocated implicitly
the program never says free
the runtime system tracks every object reference
when an object is unreachable then it can be deallocated

a garbage collector runs periodically to deallocate unreachable objects

Advantage compared to explicit delete

no dangling pointers

MBuf receive () {
MBuf mBuf = new MBuf ();

return mBuf;

}

void foo () {
MBuf mb = receive ();
bar (mb);

}

19

Discussion

What are the advantages of C’s explicit delete

What are the advantages of Java’s garbage collection

Is it okay to ignore deallocation in Java programs?

20

Memory Management in Java

Memory leak

occurs when the garbage collector fails to reclaim unneeded objects
memory Is a scarce resource and wasting it can be a serous bug
its huge problem for long-running programs where the garbage accumulates

How is it possible to create a memory leak in Java?

Java can only reclaim an object if it is unreachable
but, unreachability is only an approximation of whether an object is needed
an unneeded object in a hash table, for example, is never reclaimed

The solution requires engineering

just as in C, you must plan for memory deallocation explicitly
unlike C, however, if you make a mistake, you can not create a dangling pointer
in Java you remove the references, Java reclaims the objects

Further reading
http://java.sun.com/docs/books/performance/1st edition/html/JPAppGC.fm.html

21

http://java.sun.com/docs/books/performance/1st_edition/html/JPAppGC.fm.html
http://java.sun.com/docs/books/performance/1st_edition/html/JPAppGC.fm.html

Ways to Avoid Unintended Retention
ENRICHMENT: You are not required to know this
imperative approach with explicit reference annulling

explicitly set references to NULL when referent is longer needed
add close() or free() methods to classes you create and call them explicitly
use try-finally block to ensure that these clean-up steps are always taken

these are imperative approaches; drawbacks?

declarative approach with reference objects

refer to objects without requiring their retention
store object references that the garbage collector can reclaim

WeakReference<Widget> weakRef = new WeakReference<Widget>(widget);
Widget widget = weakRef.get() // may return NULL

different levels of reference stickiness
soft discarded only when new allocations put pressure on available memory
weak discarded on next GC cycle when no stronger reference exists

phantom unretrievable (get always returns NULL), used to register with GC reference queue

22

Using Reference Objects

ENRICHMENT: You are not required to know this
Creating a reclaimable reference

the Reference class is a template that be instantiated for any reference
store instances of this class instead of the original reference

void bar (MBuf mb) {
aMB = new WeakReference<Mbuf>(mb);

}

allows the garbage collector to collect the MBuf even if aMB points to it

This does not reclaim the weak reference itself

while the GC will reclaim the MBUuf, it can’t reclaim the WeakReference

the problem is that aMB stores a reference to WeakReference
not a big issue here, there is only one

but, what if we store a large collection of weak references?

23

Using Reference Queues
ENRICHMENT: You are not required to know this

The problem
reference objects will be stored in data structures

reclaiming them requires first removing them from these data structures

The reference queue approach

a reference object can have an associated reference queue
the GC adds reference objects to the queue when it collects their referent

your code scans the queue periodically to update referring data structures

ReferenceQueue<MBuf> refQ = new ReferenceQueue<MBuf> ();

void bar (MBuf mb) {
aMB = new WeakReference<Mbuf> (mb,refQ);
}

void removeGarbage () {
while ((WeakReference<Mbuf> ref = refQ.poll()) '= null)
// remove ref from data structure where it is stored
if (@MB==ref)
aMB = null;

24

