Introduction to Computer Systems

Unit 1b
Static Scalars and Arrays

Reading

Companion
2.2.3,2.3,2.41-2.4.3,2.6

Textbook
Array Allocation and Access
1ed: 3.8
2ed: 3.8

The Big Picture

Build machine model of execution
for Java and C programs
by examining language features
and deciding how they are implemented by the machine
What is required
design an ISA into which programs can be compiled
implement the ISA in the hardware simulator
Our approach
examine code snippets that exemplify each language feature in turn
look at Java and C, pausing to dig deeper when C is different from Java
design and implement ISA as needed
The simulator is an important tool

machine execution is hard to visualize without it
this visualization is really our WHOLE POINT here

Design Plan

Examine Java and C Bit by Bit

Reading writing and arithmetic on Variables
e static base types (e.g., int, char)
e static and dynamic arrays of base types

e dynamically allocated objects and object references
* object instance variables

e procedure locals and arguments
Control flow

e static intra-procedure control flow (e.g., if, for, while)
e static procedure calls

e dynamic control flow and polymorphic dispatch

Design Tasks

Design Instructions for SM213 ISA

* design instructions necessary to implement the languages

* keep hardware simple/fast by adding as few/simple instructions possible
Develop Compilation Strategy

* determine how compiler will compile each language feature it sees
e which instructions will it use?
* in what order?

* what can compiler compute statically?

Consider Static and Dynamic Phases of Computation
* the static phase of computation (compilation) happens just once

* the dynamic phase (running the program) happens many times

* thus anything the compiler computes, saves execution time later

The Simple Machine (SM213) ISA

Architecture
* Register File 8, 32-bit general purpose registers
*CPU one cycle per instruction (fetch + execute)

* Main Memory byte addressed, Big Endian integers
Instruction Format

* 2 or 6 byte instructions (each character is a hex digit)
- x-sd, xsd-, xxsd, Xxsvv, XXVs, Or XS—— VVVVVVVV

* where
- X or XX is opcode (unique identifier for this instruction)
- = means unused

- s and d are operands (registers), sometimes left blank with -

- Vv and vvvvvvvyv are immediate / constant values

Machine and Assembly Syntax

Machine code

o[addr:] x-01 [vvvvvvvy |
- addr: sets starting address for subsequent instructions
- x-01 hex value of instruction with opcode x and operands 0 and 1

- vwwwwwwy hex value of optional extended value part instruction
Assembly code

o ([label:] [instruction | directive] [# comment] |)*

-directive :: (.pos number) | (.long number)
—1instruction :: opcode operand+

- operand .2 $literal | reg | offset (reg) | (reg,reg,4)
-reg r0..7

- literal > number

- offset > number

-number ;- decimal | Ox hex

Register Transfer Language (RTL)

Goal

* a simple, convenient pseudo language to describe instruction semantics
e easy to read and write, directly translated to machine steps
Syntax

e each line is of the form LHS « RHS

* LHS is memory or register specification

* RHS is constant, memory, or arithmetic expression on two registers
Register and Memory are treated as arrays

* m[a] is memory location at address a

* r[i] is register number i

For example

°r[0] « 10

*r[1] « m[r[O]]

e r[2] « r[0] + r[1]

Implementing the ISA

The CPU Implementation

Reg Value
PC: 0000010e
Instruction: 3081 00000000
Internal state Ins Op Code: 3
°pc address of next instruction to fetch :22 8? 1 g
e instruction the value of the current instruction Ins Op 2: 1
-~ insOpCod Ins Op Imm: 81
Insptlode — Ins Op Ext: 20000000
- insOp0
- insOp1
- insOp2
- insOplmm]
- insOpExt
Operation
e fetch

- read instruction at pc from memory, determine its size and read all of it
- separate the components of the instruction into sub-registers
- set pc to store address of next instruction, sequentially
® execute
- use insOpCode to select operation to perform
- read internal state, memory, and/or register file

- update memory, register file and/or pc

11

Static Variables of
Built-In Types

Stath VarlableS, BUIIt_I n TypeS (S1-global-static)

Java
e static data members are allocated to a class, not an object
e they can store built-in scalar types or references to arrays or objects (references later)

public class Foo {
static int a;
[1 b;

public void foo () {
a=0;
1}

C

* global variables and any other variable declared static
* they can be static scalars, arrays or structs or pointers (pointers later)

int a;
int b[10];

void foo () {
a =0;
bla] = a;

}

13

Static Variable Allocation

Static Memory Layout

int a; int a; | j 0x1000: value of a

int b[10; : 0x2000: value of b[0]
int b[10 X

void foo () { L] 0x2004: value of b[1]

a =0;

blal=a, 10x2024: value of b[9]

Allocation is
* assigning a memory location to store variable’s value

e assigning the variable an address (its name for reading and writing)

Key observation
* global/static variables can exist before program starts and live until after it finishes

Static vs dynamic computation
e compiler allocates variables, giving them a constant address
* no dynamic computation required to allocate the variables, they just exist

Static Variable Access (scalars)
Static Memory Layout

int a = 0; 0x1000: value of a

int b[10]; | 0x2000: value of b[0]

void oo 0 { | 0x2004: value of b[1]
a =0;

}b[a] = 3a; 0x2024: value of b[9]

Key Observation

e address of a, b[0], b[1], b[2], ... are constants known to the compiler

Use RTL to specify instructions needed fora = 0

Generalizing
*What if it'sa =a + 2?2 ora = b? or a = foo ()?
* What about reading the value of a?

15

Question (scalars)

Static Memory Layout

int a a=0:; 0x1000: value of a

int b[10]; | 0x2000: value of b[0]

void oo 0 { | 0x2004: value of b[1]
a =0; i

}b[a] = 3a; EOX2024: value of b[9]

When is space for a allocated (when is its address determined)?
¢ [A] The program locates available space for a when program starts

* [B] The compiler assigns the address when it compiles the program

¢ [C] The compiler calls the memory to allocate a when it compiles the program

¢ [D] The compiler generates code to allocate a before the program starts running

¢ [E] The program locates available space for a when the program starts running

* [F] The program locates available space for a just before calling foo()

Static Variable Access (static arrays)
Static Memory Layout

int a 0x1000: value of a

int b[10]; 0x2000: value of b[0]
void foo 0 { b[a] . 0x2004: value of b[1]
}b[a] = a; 0x2024: value of b[9],

Key Observation
compiler does not know address of b[a]

unless it can knows the value of a statically, which it could here by looking at a=0, but not in general

Array access is computed from base and index
address of element is base plus offset; offset is index times element size
the base address (0x2000) and element size (4) are static, the index is dynamic

Use RTL to specify instructions for b[a] = a, not knowing a?

17

Designing ISA for Static Variables

Requirements for scalars
load constant into register

a=0;

rx] « v
store value in register into memory at constant address
m[0x1000] + r[x]
load value in memory at constant address into a register
r[x] + m[0x1000] 7 :
Additional requirements for arrays b[a] = 4,

store value in register into memory at address in register*4 plus constant
m[0x2000+r[x]*4] + r[y]

load value in memory at address in register*4 plus constant into register
rfy] + m[0x2000+r[x]*4]
Generalizing and simplifying we get
r[x] « constant
mr[x]] « rfy] and r[y] < m[r[x]]
m[r[x] + rly]*4] « r[z] and r[z] « m[r[x] + r[y]*4]

The compiler’s semantic translation

it uses these instructions to compile the program snippet

!nt a; (0] 0
nt b10k 1] — 0x1000
void foo () { m[r[1]] « r[0]
a=0;
- a r[2] « mr[1]]
}b[a]) r[3] « 0x2000

mlr[3]+r[2]*4] « r[2]

ISA Specification for these 5 instructions

Name Semantics Assembly Machine
load immediate |r[d] « v Id $v, rd 0d-- vvvvvvvv
load base r[d] « mir[s]] Id ?(rs), rd 17sd
load indexed r[d] « mir[s]+4*r[il] Id (rs,ri,4), rd 2sid
store base m[r[d]] « r[s] strs, ?(rd) 3s’d
store indexed m(r[d]+4*r[i]] < r[s] strs, (rd,ri,4) 4sdi

19

The compiler’s assembly translation

r[0]

!nt a; <0
int b[10]; r[1] <~ 0x1000
void foo () { mirl1] o]

a=0;

. r[2] « m[r[1]]
}b[a] 3, (3] « 0x2000
mr[3]+r[2]*4] « r[2]

int a; Id $0, rO
int b[10]; Id $0x1000, r1
void foo () { str0, (rl)

a=0;

blal = a Id (r1), r2

Id $0x2000, r3

} str2, (r3,r2,4)

20

If a human wrote this assembly

list static allocations, use labels for addresses, add comments

Id $0, rO

int a; #r0=0
int b[10]; Id $a_data, r1 # rl1 = address of a
void foo () { str0,(rl) #a=0

a=0; -

bla] = a: Id(rl),r2 #r2=a

}

Id $b_data, r3 # r3 = address of b
str2, (r3,r2,4) # bla] = a

.pos 0x1000

a_data:

long 0 # the variable a
.pos 0x2000

b_data:

long 0 # the variable b[0]
dong 0 # the variable b[1]
long 0 # the variable b[9]

Addressing Modes

In these instructions

Name Semantics Assembly Machine
load immediate |r[d] « v Id $v, rd 0d-- vvvvvvvv
load base rld] « mlr[s]] Id ?(rs), rd 17sd
load indexed r[d] « mlr[s]+4*r[il] Id (rs,ri,4), rd 2sid
store base m[r[d]] « r[s] st rs, 2(rd) 3s7d
store indexed mrid]+4*r[i]] « r[s] strs, (rd,ri,4) 4sdi

We have specified 4 addressing modes for operands

immediate
register
base

indexed

constant value stored in instruction
operand is register number, register stores value

operand in register number
register stores memory address of value

two register-number operands
store base memory address and index of value

22

Basic Arithmetic, Shifting NOP and Halt

Arithmetic
Name Semantics Assembly Machine
register move r[d] « r[s] mov rs, rd 60sd
add r[d] « r[d] + r[s] add rs, rd 61sd
and r(d] « r[d] & r[s] and rs, rd 62sd
inc r[d] « r[d] + 1 inc rd 63-d
inc address rid] « r[d] + 4 inca rd 64-d
dec rid] « r[d] - 1 dec rd 65-d
dec address rld] « r[d] - 4 deca rd 66-d
not rld] « ~ r[d] not rd 67-d
Shifting NOP and Halt
Name Semantics Assembly Machine
shift left rld] « r[d] << S =s shird, s 2dSS
shift right r(d] « r[d] >>S = -s shrrd, s
halt halt machine halt fo--
nop do nothing nop ff—-

23

Global Dynamic Array

Global Dynamic Array

Java
array variable stores reference to array allocated dynamically with new statement

public class Foo {
static int a;
static int b[] = new int[10];

void foo () {
bla]=a;
1
C

array variables can store static arrays or
pointers to arrays allocated dynamically with call to malloc library procedure

int a;
int* b: malloc does not assign a type
of bytes to allocate
void foo () “" v
b = (int*) malloc (10*sizeof(int));
bla] = a;
}

25

How C Arrays are Different from Java

Terminology
use the term pointer instead of reference; they mean the same thing

Declaration
the type is a pointer to the type of its elements, indicated with a *
Allocation
malloc allocates a block of bytes; no type; no constructor
Type Safety
any pointer can be type cast to any pointer type
Bounds checking
C performs no array bounds checking

out-of-bounds access manipulates memory that is not part of array
this is the major source of virus vulnerabilities in the world today

Question: Can array bounds checking be perform statically?
* what does this say about a tradeoff that Java and C take differently?

26

Static vs Dynamic Arrays

Declared and allocated differently, but access‘ed the same

int a; int a;
int b[10]; int* b;
void foo () { void foo () {
bla] = a; b = (int*) malloc (10*sizeof(int));
} bla] = a;

}

Static allocation
for static arrays, the compiler allocates the array
for dynamic arrays, the compiler allocates a pointer

LOXZOOO: value of b i

0x2000: value of b[0]
0x2004: value of b[1]

h.(5;<2024: value of b[9]

27

Then when the program runs
the dynamic array is allocated by a call to malloc, say at address 0x3000
the value of variable b is set to the memory address of this array

i

' 0x2000: value of b[0]

0x2000: 0x3000
0x2004: value of b[1] T ——

0x3000: value of b[0]
0x3004: value of b[1]

6;<2024: value of b[9]

6;<3024: value of b[9]

Generating code to access the array
for the dynamic array, the compiler generates an additional load for b

+~ 0x1000 r[0] « 0x1000

r[0]

r[1] « mIr[0]] r[1] « mIr[0]] load a

r(2] +« 0x2000 r(2] +~ 0x2000

mlr[2]+r[1]*4] « r[1] r[3] « m[r[2]] load b
mr[3]+r[2]*4] « r[2] bla]=a

28

In assembly language
Static Array

Id $a_data, rO # rl = address of a

Dynamic Array

Id $a_data, rO # rl = address of a

Id (r0), r1 #r2=a Id (r0), r1 #r2 =a
Id $b_data, r2 # r2 = address of b Id $§b_data, r2 # r2 = address of b
strl, (r2,rl,4) # bla]l = a Id (r2), r3 #r3=>Db

strl, (r3,r1,4) # bla] = a

.pos 0x1000
a_data: .pos 0x1000
.long 0 # the variable a a_data:
.ong 0 # the variable a
.pos 0x2000
b_data: .pos 0x2000
long 0 # the variable b[0] b_data:
long 0 # the variable b[1] .long 0 #theb
long 0 # the variable b[9]

Comparing static and dynamic arrays
what is the benefit of static arrays?
what is the benefit of dynamic arrays?

29

Pointers in C

30

C and Java Arrays and Pointers

In both languages
an array is a list of items of the same type
array elements are named by non-negative integers start with O
syntax for accessing element i of array b is bli]

In Java

variable a stores a pointer to the array

b[x] = 0 means m[m[b] + x * sizeof(array-element)] « O
In C

variable a can store a pointer to the array or the array itself

b[x] =0 means m[b + x * sizeof(array-element)] + 0

or m[m[b] + x * sizeof(array-element)] « 0
dynamic arrays are just like all other pointers
stored in TYPE*

access with either a[x] or *(a+x)

31

Example

The following two C programs are identical

int *a;
af[4] = 5;

int *a;
“(a+4) = 5;

For array access, the compiler would generate this code

r[O] «~a Id $a, rO
r[1] ~ 4 Id $4, r1
r[2] «5 Id $5, r2
m[r[0]+4*r[1]] « r[2] str2, (r0,r1,4)

multiplying the index 4 by 4 (size of integer) to compute the array offset

So, what does this tell you about pointer arithmetic in C?

Adding X to a pointer of type Y*, adds X * sizeof(Y)
to the pointer’s memory-address value.

32

Pointer Arithmetic in C

Its purpose
e an alternative way to access dynamic arrays to the ai]

Adding or subtracting an integer index to a pointer
e results in a new pointer of the same type
¢ value of the pointer is offset by index times size of pointer’s referent
* for example
- adding 3 to an int* yields a pointer value 12 larger than the original
Subtracting two pointers of the same type
* results in an integer
e gives number of referent-type elements between the two pointers
* for example
“(&a[7]) - &a[2])) ==5 == (@+7) - (a+2)
other operators
*& X the address of X
o * X the value X points to

33

Q U eStl ON (from $3-C-pointer-math.c)

int *c;

void foo () {
/] ...
c = (int *) malloc (10*sizeof(int));
/] ...

¢ = &c[3]; — |
*c = *&c[3]; : - - 1

/] ...
}

What is the equivalent Java statement tQ s
*[A] c[0] = c[3];

* [B] c[3] = c[6];

¢ [C] there is no typesafe equivalent

¢ [D] not valid, because you can’t take the address of a static in Java

34

Looking more closely

¢ = &c[3]; r[0] « 0x2000

r[0] = &c
e = "&c[3]; (1] e mirol] #r[l] =c
r[2] « 12 # r[2] = 3 * sizeof(int)
r[2] « r[2]+r[1] #r[2l=c+ 3
m[r[0]] « r[2] #c =c+ 3
r(3] « 3 #r[3] =3

r[4] <« mr[2]+47*r[3]] # r[4] = c[3]

m[r[2]] « r[4] # c[0] = c[3]
Before After
iOXZOOOZ 0x3000 g’) 0x3000: 0 0x2000: 0x300c 0x3000: 0
0x3004: 1 0x3004: 1
0x3008: 2 0x3008: 2
0x300c: 3 0x300c: 6
0x3010: 4 0x3010: 4
0x3014: 5 c[0] = cI3] 0x3014: 5
0x3018: 6 0x3018: 6
0x301c: 7 0x301c: 7
0x3020: 8 0x3020: 8
Tt At u vl e il

35

And in assembly language

rf0] <« 0x2000 # r[0] = &c

r(1] < m[r[O]] #r[l]l =c

rf2] « 12 # r[2] = 3 * sizeof(int)
r[2] « r[2]+r[1] #r[2l=c+ 3
mIr[0]] < r[2] #c =c+ 3

r(3] « 3 #r[3] =3

r[4] « mir[2]+4*r[3]] # r[4] = c[3]

m[r[2]] « r[4] # c[0] = (3]

Id $0x2000, r0 #r0 = &c

Id (r0), r1 #rl=c

Id $12, r2 # r2 = 3*sizeof(int)
add rl, r2 #r2 =c+3

st r2, (r0) #c =c+3

Id $3, r3 #r3 =3

Id (r2,r3,4), r4 #r4 = c[3]

st r4, (r2) # c[0] = c[3]

36

Summary: Static Scalar and Array Variables

Static variables

the compiler knows the address (memory location) of variable
Static scalars and arrays

the compiler knows the address of the scalar value or array
Dynamic arrays

the compiler does not know the address the array
What C does that Java doesn’t

static arrays
arrays can be accessed using pointer dereferencing operator

arithmetic on pointers

What Java does that C doesn’t

typesafe dynamic allocation
automatic array-bounds checking

37

