Introduction to Computer Systems

Unit 1a
Numbers and Memory

The Big Picture

Build machine model of execution

for Java and C programs
by examining language features
and deciding how they are implemented by the machine

What is required

design an ISA into which programs can be compiled
implement the ISA in the hardware simulator

Our approach

examine code snippets that exemplify each language feature in turn
look at Java and C, pausing to dig deeper when C is different from Java
design and implement ISA as needed

The simulator is an important tool

machine execution is hard to visualize without it
this visualization is really our WHOLE POINT here

In the Lab ...

write a C program to determine Endianness
prints “Little Endian” or “Big Endian”
get comfortable with Unix command line and tools (important)

compile and run this program on two architectures
IA32: |in01.ugrad.cs.ubc.ca
Sparc: galiano.ugrad.cs.ubc.ca
you can tell what type of arch you are on
% uname -a
SimpleMachine simulator
load code into Eclipse and get it to build
write and test MainMemory.java
additional material available on the web page at lab time

The Main Memory Class

The SM213 simulator has two main classes

* CPU implements the fetch-execute cycle
* MainMemory implements memory

The first step in building our processor

* implement 6 main internal methods of MainMemory

CPU MainMemory
fetch ISAligned
execute bytesTolnteger

' integerToBytes

get
set

The Code You Will Implement

* Determine whether an address is aligned to specified length.

* @param address memory address

* @param length byte length

* @return true iff address is aligned to length

7'\'/

protected boolean iSAccessAligned (int address, int length) {
return false;:

}

* @param
* @param
* @param
* @param

oyteAtAC
oyteAtAC
oyteAtAC

oyteAtAC

rP
rP
rP
rP

C
C
C
C

usO va
usl va
us2 va
us3 va

* Convert an sequence of four bytes into a Big Endian integer.

ue of byte with lowest memory address
ue of byte at base ad
ue of byte at base ad
ue of byte at base ad
* @return Big Endian integer formed by these four bytes

ol
5

us 1
us 2
us 3

C
C
C

ress p
ress p
ress p

public int bytesTolnteger (UnsignedByte byteAtAddrPlusO,

}

return O;

N
PARRAY

Unsignec
Unsignec

Unsignec

Byte
Byte
Byte

pyteAtAC
oyteAtAC

oyteAtAC

C
C

C

rP
rP
rP

usl,
us2,

us3) {

* Convert a Big Endian integer into an array of 4 bytes
* @param i an Big Endian integer
* @return an array of UnsignedByte

,\/

public UnsignedByte[] IntegerToBytes (int i) {
return null;

}

* Fetch a sequence of bytes from memory.

* @param address address of the first byte to fetch

* @param length number of bytes to fetch

* @return an array of UnsignedByte

*/

protected UnsignedByte[] get (int address, int length) throws ... {
UnsignedByte[] ub = new UnsignedByte [length];
ub[0] = new UnsignedByte (0); // with appropriate value
/| repeat to ub[length-1] ...

return ub;
§
/~,'<~,'<
* Store a sequence of bytes into memory.
* @param address address of the first memory byte
* @param value an array of UnsignedByte values

* @throws InvalidAddressException if any address is invalid
*/
protected void set (int address, UnsignedByte[] value) throws ... {
byte b[] = new byte [value.length];
for (int i=0; i<value.length; i++)
bli] = (byte) valueli].value();
/| write b into memory ...

}

Reading

Companion
previous module: 1, 2.1

new: 2.2 (focus on 2.2.2 for this week)

Textbook

A Historical Perspective, Machine-Level Code, Data Formats, "New to C",
Data Alignment.

2ed: 3.1-3.2.1, 3.3, "New to C" sidebar of 3.4, 3.9.3
(skip 3.2.2 and 3.2.3)

1ed: 3.1-3.2.1, 3.3, "New to C" sidebar of 3.4, 3.10

Numbers in Memory

Binary, Hex, and Decimal Refresher

Hexadecimal notation

number starts with “Ox” , each digit is base 16 not
base 10

e.g.: 0x2a3 = 2x162% + 10x16" + 3x16°

a convenient way to describe numbers when
binary format is important

each hex digit (hexit) is stored by 4 bits:

(0[1)x8 + (0|1)x4 + (0|1)x2 + (0]1)x1
Examples

0x10 in binary? in decimal?

Ox2e in binary? in decimal?

1101 1000 1001 0110 in hex? in decimal?

102 in binary? in hex?

B

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

-+ ® Q& N T 9 ©OW 0 N O U1 ~h W N 2 O T

O 00 N OO Uit b W N =2 O O

R PR R R
ol A W NN R O

10

Memory and Integers

Memory is byte addressed

every byte of memory has a unique address, numbered from
OtoN

N is huge: billions is common these days (2-16 GB)

Integers can be declared at different sizes
byte is 1 byte, 8 bits, 2 hexits
short is 2 bytes, 16 bits, 4 hexits
int or word or long is 4 bytes, 32 bits, 8 hexits
long long is 8 bytes, 64 bits, 16 hexits

Integers in memory

reading or writing an integer requires specifying a range of
byte addresses

O 00O N O UuUil A W N R O

11

Making Integers from Bytes

Memory

Our first architectural decisions

assembling memory bytes into integer registers

Consider 4-byte memory word and 32-bit register | i+

it has memory addresses |, i+1, 1+2, and i+3 | + 2

T

we’ll just say it's “at address i and is 4 bytes long” i+ 3
e.g., the word at address 4 is in bytes 4, 5, 6 and 7.

Big or Little Endian (end means where start from, not finish)
we could start with the BIG END of the number (most everyone but Intelz

23110 224 223 g 216 215 to 28 27 to 20 Register bits
or we could start with the LITTLE END (Intel x86, some others)

231 to 224 223 to 216 215 {0 28 27 to 20 Register bits

12

» Aligned or Unaligned Addresses

* we could allow any number to address a multi-byte integer

E E * disallowed on many
architectures
E * allowed on Intel,

but slower

* or we could require that addresses be aligned to integer-size boundary

=EX_ L

4-byte words

address modulo chunk-size is always zero

* Power-of-Two Aligned Addresses Simplify Hardware

- smaller things always fit complete inside of bigger things

= == word contains exactly two
= =

complete shorts

- byte address from integer address: divide by power to two, which is just shifting bits

jl2k==j>>k (j shifted k bits to right)

13

Computing Alignment

boolean align(hnumber, size)

does a number fit nicely for a particular size (in bytes)?

divide number n by size s (in bytes), aligned if no
remainder

easy if number is decimal

otherwise convert from hex or binary to decimal

checkifnmods=0

mod notation usually '%"'. same as division, of course...

check if certain number of final bits are all O

pattern?

last 1 digit for 2-byte short
last 2 digits for 4-byte world
last 3 digits for 8-byte longlong

last k digits, where 2k =s (size in bytes)
easy if number is hex: convert to binary and check

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

- O Q N T 9 OW 60 N O v A~ W NN R O T

O 60O N O L1l b W N R O O

e el el =
vl A W N R O

14

Question

Which of the following statement (s) are true

A

B
C.
D

6::

102 is aligned for addressing a short

102 is aligned for addressing a long

101002 is aligned for addressing a long

101002 is aligned for addressing a long long (i.e., 8-byte int)

15

Interlude
A Quick C Primer

Java Syntax...

source files

Java is source file

including packages in source
Import java.io.*”
printing

System.out.printin("blah blah");
compile and run

javac foo.java
java foo

vs. C Syntax

source files

.C Is source file
.h is header file

including headers in source
#include <stdio.h>

printing
printf("blah blah\n");

compile and run

gcc -o foo foo.c
./foo

do this at a Unix shell prompt
(Linux, Mac Terminal, Sparc,
Cygwin on Windows)

17

Java Hello World...

import java.l10.¥;
public class HelloWorld {
public static void main (String[] args) {
System.out.println("Hello world");

}
}

C Hello World...

#include <stdio.h>

main() {
printf("Hello world\n");

18

Java and C: Similarities

declaration, assignment

int a = 4;
control flow (often)
if (@==4) ... else ...

for(inti=0;i<10; i++) {...}
while (i < 10) {...}

casting

int a;

long b;

a = (int) b;

19

New In C: Pointers

pointers: addresses in memory

locations are first-class citizens in C

can go back and forth between location and value!

pointer declaration: <type>*

int* b; // bis a POINTER to an INT
getting address of object: &

Int a; [/ ais an INT

int* b = &a; // bis a pointer to a
de-referencing pointer: *

a = 10; /] assign the value 10 to a

*b = 10; /| assign the value 10 to a
type casting is not typesafe

char a[4]; /] a 4 byte array

((int)a) = 1; // treat those four bytes as an INT

0x00000000
0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006

Ox3e47ad40
Ox3ed47ad4l
Ox3e4d47ad4?2

OxFFFFFFFf

20

Back to Numbers ...

Determining Endianness of a Computer

#include <stdio.h>

int main () {
char a[4];

((int)a) = 1;

printf("a[0]=%d a[1]=%d a[2]=%d a[3]=%d\n",a[0],a[1],a[2],a[3]);
}

22

Which of the following statements are true
A] memory stores Big Endian integers

B] memory stores bytes interpreted by the CPU as Big Endian integers
C] Neither

D] | don’t know

23

Which of these are true

A] The Java constants 16 and 0x10 are exactly the same integer
B] 16 and 0x10 are different integers
C] Neither

D] I don't know

24

What is the Big-Endian integer value at address 4 below?

A
B

C.

D
E]
F]

0x1c04bo73
Oxcl40o0b37
Ox73bo0d41cC
0x376b40cl

none of these
| don’t know

Memory
0x0: Oxfe
Ox1: Ox32
Ox2: Ox87
Ox3: 0x9a
Ox4 . Ox73
Ox5: Oxb6
Ox6: Ox04
Ox7: Ox1c

25

What is the value of | after this Java statement executes?
int i = (byte)(Ox8b) << 16;

A Ox8b

B] 0x0000008b
C 0x008b000O0
D Oxff8b0000
E] None of these
F] | don’t know

26

What is the value of | after this Java statement executes?

i = Oxff8b0000 & 0x00ff0000;
Oxffff0000
Oxff8b0000
0x008b000A0

| don’t know

S 03 >

27

