

CPSC 213: Assignment 8
Due: Monday, March 19, 2012 at 6pm.

Late assignments are accepted until Wednesday, March 21 at 6pm with a 25% penalty per day
(or fraction of a day) past the due date. This rule is strictly applied and there are no exceptions.

Goal
In this assignment you will gain experience with programming with threads in Java and will
examine the use and implementation of user-level threads in C.

Notes on FunWithThreads
In the first part of the assignment you do some thread programming in Java. You are provided
with a file, “FunWithThreads.java”, which includes a simplified model of a disk with an
operation called read. Unlike disk hardware, this read operation is synchronous. Like disk
hardware it takes around 10ms (1/100 of a second) to complete a disk read. During this time the
read method waits by sleeping (leaving the CPU idle while it waits).

The program is parameterized by command-line arguments that are listed at the beginning of the
class. If you run the class without arguments (or providing incorrect argument syntax), it prints a
description of the arguments. You use these arguments to select from one of three different
implementations (sequential, threaded, and executor). The first of these is provided for you.
Your first goal is to implement the other two. Note that your implementations must store the
result of calls to read in the val array like the sequential version does.

The threaded version should create and start a thread, using Java’s standard Thread interface
(as described in class), for every read and then join with these threads to record the read result
in the val array. And so, for example, this version will create 1000 threads to perform 1000
reads.

The executor version should use a fixed thread pool with the number of threads in the pool
specified by the argument “threadCount”, which is set by a command-line argument. The
statement that creates the executor is provided. Also provided is an ArrayList to store the
future values returned by executor submit method. This collection is provided because you
might be tempted to create an array to store the future values for each read call, but
futures are generics and Java does not allow you to create an array of generics. Collections of
generics are fine, however.

To test your implementation, use the “-verbose” argument and small number of reads (e.g.,
“-count 20”) and examine the output. The output comes as a list of number pairs. The first
number is a sequence number assigned by the disk read when it completes and the second is a
sequence number you assign when you request the read (it is the argument to the read method).
The request number should be monotonically increasing, but you may see some small variation

between the request and completion numbers and even some repeated or out-of-order completed
sequence numbers; this is okay. As an aside you might ask yourself why this is happening (we
will talk about this problem next week).

Once you are certain your two implementations work, your next task is to compare the runtime
performance (i.e., running time) of these three alternatives under various setting of the
readCount and threadCount parameters.

In UNIX you can time any operation by placing the word “time” before the command on the
command line. For example, to time the sequential version you would type:

 time java FunWithThreads -c 1000 -s

For the timing to be valid you must not specify the verbose option and you must perform a
large number of reads (e.g., at least 1000) and run the command a number of times. Running
times will vary depending on what else is running on the system (and some other factors) and so
the best value to record is the minimum of several executions. Best results will be achieved
running this on your laptop since you can control what else is running better there than on a
department server.

The output of the time command is a little complicated. It shows you elapsed time and some
other things (e.g., user and system time etc.) and looks something like this.

 1.704u 1.402s 0:01.82 170.3% 0+0k 0+0io 12pf+0w

We are only interested in the elapsed time, which is the third number, in this case 1.82s.

To begin, compare all three implementations performing 1000 reads (i.e., “-count 1000”).
For the executor implementation, vary the size of the thread pool to find the best value to the
nearest 50 threads or so (e.g., “-e 200” and then “-e 250” etc.). This does not have to be
exact and there will be enough variation that an exact answer will be elusive.

Now, compare only the threaded and executor versions, varying read count (i.e., “-count
1000” and then “-count 10000”, etc.) to determine when executors are faster than threads.
Again, vary the size of the thread pool to get the best executor performance.

Notes on UThreads
In the second part of the assignment you will switch to C and the uthread user-level thread
package we have discussed in class.
The uthread package runs on Intel x86 machines running Linux, MacOS or Cygwin.
Department machines that run Linux include remote.ugrad.cs.ubc.ca, and all machines
named linXX.ugrad.cs.ubc.ca, where XX is a two-digit number like ‘02’ or ‘12’. To
compile on Linux or Cygwin it is necessary to explicitly include the pthread library by adding
“-lpthread” to the gcc command; this parameter is optional on MacOS.

Requirements
Here are the requirements for this week’s assignment.

1. Implement the “threaded” and “executor” methods of FunWithThreads.java
as described above.

2. Test your implementation of these two methods.
3. Compare the running time of the sequential, threaded, and executor implementations for a

readCount of 1000, varying the size of the executor thread pool to optimize its
performance. Carefully describe what you observe including saying which
implementation is fastest/slowest etc., which thread-pool size gives the best results for
executor, and what you think accounts for the performance differences you see.

4. Compare the running time of threaded and executor for larger read counts (e.g., increase
by a factor of 10 each time) to determine when threaded is slower than executor, varying
the size of the executor thread pool to optimize its performance. Carefully describe what
you observe including the readCount (to the nearest 1000-5000 or so) at which
executor begin to perform better than threaded, the ideal thread pool size for executor for
this number of reads, and what you think accounts performance differences you see. Be
sure you answer this question as best you can: why does the threaded version slow down
faster than the executor version does?

5. Compile the files ping_pong.c and uthread.c. Run the resulting program

 gcc -lpthread -o ping_pong ping_pong.c uthread.c

6. Read uthread.c carefully. Describe the control-flow path involved in creating and
starting a new thread by listing the uthread procedures that execute, in order, starting
with the creation of a thread and ending when the thread’s start procedure begins
executing.

7. Execute the ping_pong program and examine its output. Carefully explain this output
by describing the execution of the ping and pong threads. Your explanation should be
detailed and should include a description of control flow paths (i.e., procedure names
executed) in the uthread package relevant to explain the execution of these two threads.

8. Modify the ping_pong procedure to add a call to uthread_yield in both ping and
pong at the end (but inside) of the iteration loop (i.e., just after the “j” for loop, but
inside of the “i” for loop). Run this modified program, examine its output and compare it
to the previous output. Explain what you see by again describing the execution of the two
threads in a detailed fashion including the relevant uthread thread control flow.

9. Modify the ping_pong procedure to change the argument to uthread_init from 1
to 2 to change its running environment from a uni-processor to a 2-processor system.
Run ping_pong again (you should run it at least 3-5 times; they should be different
from each other), compare and explain its output as you did in question 4. Carefully
explain what this change did and why it produced the output it did.

10. Implement the problem from Assignment 7 using threads instead of calls to doAsync.
Change the “Triple” struct to remove the “result” field and now have the add and
sub routines return the resulting value (they will return this as an opaque pointer (i.e.,
void*). Use uthread_join to get this value, cast it back to its actual type, and to
synchronize the three phases of the computation (the inner additions, the subtraction, and
outer addition)

Material Provided
The files FunWithThreads.java, uthread.h, uthread.c and ping_ping.c are
provided in the archive code.zip.

What to Hand In
Use the handin program. The assignment directory is a8. Please hand in exactly the following
files with the specified names. Do NOT hand in class files, or your entire Eclipse project, or a
README in formats like .doc or .rtf.

1. FunWithThreads.java with threaded and executor methods implemented, as

specified in Requirement 1.

2. notAsync.c that implements the same computation as the async program from
Assignment 7, but using the uthread package, as specified in Requirement 10.

3. README.txt that contains:

 header with your name, student number, four-digit cs-department undergraduate id
(e.g., the one that’s something like a0b1)

 statement that “I have read and complied with the collaboration policies” at
http://www.ugrad.cs.ubc.ca/~cs213/winter11t2/policies.html

 answers (i.e., comparisons of running time and what accounts for the differences) to
Requirement 3 and 4.

 description and explanation of the control-flow path involved in creating and starting
a new thread, as specified in Requirement 6.

 description and explanation of the execution (and the output) of the ping and pong
threads when running the ping_pong program, as specified in Requirement 7.

 description and explanation of the execution (and the output) of the ping and pong
threads when running the modified ping_pong program, as specified in
Requirement 8.

 comparison and explanation of the outputs produced by the modified ping_pong
program by changing the argument to uthread_init function, as specified in
Requirement 9.

