

CPSC 213: Assignment 4
Due: Monday, February 13, 2012 at 6pm.

Late assignments are accepted until Wednesday, February 15 at 6pm with a 25% penalty per day
(or fraction of a day) past the due date. This rule is strictly applied and there are no exceptions.

Goal
In this assignment you extend the SM213 implementation to support static control flow,
including static procedure calls. You use this expanded machine to examine the compiler
implementation of for-loops, if-then-else statements, procedure calls and return. One goal is to
understand the role of pc-relative addressing, conditional and unconditional branch statements in
support of high-level language constructs such as loops and if, connecting your existing
understanding of these language features to what you now know about the execution of programs
in hardware. Another goal is to understand the role of the PC register in implementing jumps to
see that a jump is really just an assignment of a new value to this register. The final goal is to
contrast the use of static and dynamic jumps in implement procedure call and return and to
understand how the return instruction knows to which instruction it should jump.

Extending the ISA
You will implement these six control-flow instructions.

Instruction Assembly Format Semantics

branch br aaaaaaaa 8-pp pc ← (R = pc + pp*2)

branch if equal beq rc, R 9cpp pc ← (R = pc + pp*2) if r[c]==0

branch if greater bgt rc, R acpp pc ← (R = pc + pp*2) if r[c]>0

jump j label

.pos aaaaaaaa label:

b--- aaaaaaaa pc ← aaaaaaaa

get pc gpc $o, rd 6fpd r[d] ← pc + (o = p*2)

indirect jump j o(rd) cdpp pc ← r[d] + (o = pp*2)

Code Snippets Used this Week
As explained in detail below, you will use the following code snippets in this assignment.
There are C, Java and SM213 Assembly versions of each of these (except the C-loop-unrolled
file, for which there is no Java).
• S5-loop
• S5a-loop-unrolled
• S6-if
• S7-static-call[-regs]

Requirements
Here are the requirements for this week’s assignment.

1. Implement the six control-flow instructions one at a time. Extend your test program to
include tests for each of them. Test one before starting to implement the next.

2. Compare the C versions of snippets S5 and S5a, and then compare their assembly code
by running them in the simulator, S5a first. Document the changes you see in memory
and registers for the first few iterations of the loop and the last one.

3. Examine S6 and S7. Step the assembly through the simulator. Document the changes you
see in memory and registers.

4. Using S5, S6 and S7 as models, write, test and document the execution of an assembly
code program that implements the following C program.

 int min=1000000;
 int i;
 int a[] = {2,40,6,80,10,120,14,16,18,20};

 void foo() {
 for (i=0; i<10; i++)
 if (min > a[i])
 min = a[i];
 }

 void bar() {
 foo();
 }

Material Provided
This assignment includes snippets 5-7 in the file code.zip.

What to Hand In
Use the handin program. The assignment directory is a4. Please hand in exactly the following
files with the specified names. Do not hand in class files, or your entire Eclipse project, or a
README in formats like .doc or .rtf.

1. CPU.java.

2. test-lab4.s that tests all newly implemented instructions.

3. min.s that contains assembly implementation of the C code for Requirement 4 above.

4. README.txt that contains:

 header with your name, student number, four-digit cs-department undergraduate id
(e.g., the one that’s something like a0b1)

 statement that “I have read and complied with the collaboration policies” at
http://www.ugrad.cs.ubc.ca/~cs213/winter11t2/policies.html

 test description for test-lab4.s. Did all of the tests succeed? Does your
implementation work?

 description of the key things you noted about the machine execution while running
snippets (S5, S6, and S7), including observations required by Requirements 2 and 3.
Keep it brief, but point out what each instruction read and wrote.

