

CPSC 213: Assignment 2
Due: Monday, January 23, 2012 at 6pm.

Late assignments are accepted until Saturday, January 28 at 6pm with a 20% penalty per day (or
fraction of a day) past the due date. This rule is strictly applied and there are no exceptions.

Goal
In this assignment you will implement a significant subset of the SM213 ISA we are developing
in class: the memory-access and arithmetic instructions, which are listed below.

You will then explore how these instructions are used to implement global scalars and arrays
(both static and dynamic) in C by carefully examining code snippets in Java, C and assembly
language. An important part of this evaluation is to carefully observe the dynamic behaviour of
the assembly-language snippets by executing them in the simulator. You will develop intuition
about the connection between the high-level language statements, their machine-code
implementation and the execution of this code by the CPU hardware.

By implementing these instructions in the simulator you will see what is required to build them
in hardware and you will deepen your understanding of what a global variable is, what memory
is, and that the role that compiler and hardware play in implementing them.

A key thing to think about while doing this is: “what does the compiler know about these
variables” and so what can be hard-coded by the compiler in the machine code it generates. For
global variables, recall that the compiler knows their address. And so the address of a global
variable is hardcoded in the instructions that access it. But, the compiler does not know the
address of a dynamic array and so, even though it knows the address of the variable that stores
the array reference, it must generate code to read the array’s address from memory when the
program runs.

Finally, you’ll explore C’s approach to arrays and pointer arithmetic by carefully examining a
code snippet in C in the simulator.

Implement these SM213 Instructions
Implement the following instructions in the SM213 Simple Machine Simulator by modifying the
fetch() and execute() methods of the CPU class. These instructions are described in more detail,
including examples, in the 213 Companion. The MainMemory class that you implemented in
Assignment 1 will be used automatically in Assignment 2 and subsequently. If you were unable
to get Assignment 1 completed, you may need some extra help this week. Get this help early!

Many of these instructions, but not all, are used in this week’s code snippets. It is sufficient to
implement (and test) only those that are required for running these snippets. By next week, you
will be required to have implemented and fully tested all of this. But, if you run out of time, save
this part for next week.

Memory-Access Instructions (and load immediate)

Instruction Assembly Format Semantics

load immediate ld $v, rd 0d—vvvvvvvv r[d] ← v

load base + offset ld o(rs), rd 1isd r[d] ← m[i*4+r[s]]

load indexed ld (rs,ri,4), rd 2sid r[d] ← m[r[s]+r[i]*4]

store base + offset st rs, o(rd) 3sid m[i*4+r[d]] ← r[s]

store indexed st rs, (rd,ri,4) 4sdi m[r[d]+r[i]*4] ← r[s]

ALU Instructions

Instruction Assembly Format Semantics

rr move mov rs, rd 60sd r[d] ← r[s]

add add rs, rd 61sd r[d] ← r[d] + r[s]

and and rs, rd 62sd r[d] ← r[d] & r[s]

inc inc rd 63-d r[d] ← r[d] + 1

inc addr inca rd 64-d r[d] ← r[d] + 4

dec dec rd 65-d r[d] ← r[d] - 1

dec addr deca rd 66-d r[d] ← r[d] - 4

not not rd 67-d r[d] ← ~r[d]

shift shl $v, rd shr $v, rd 7dss
r[d] ← r[d] << ss
ss = v for left and -v for right

halt halt f000 throw halt exception

nop nop ff00 do nothing (nop)

Code Snippets Used this Week
You will use the following code snippets this week. There are C, Java and SM213 Assembly
versions of each of these (except the C-pointer-math file, for which there is no Java).

• S1-global-static
• S2-global-syn-array
• S3-C-pointer-math

Your Instruction Implementation
Implement two methods of the CPU class in the arch.sm213.machine.student package.

1. fetch () loads instructions from memory into the instruction register, determines their
length and adds this number to the pc register so that it points to the next instruction, and
then loads the various pieces of the instruction into the registers insOpCode, insOp0,
insOp1, insOp2, insOpImm, and insOpExt (for 6 byte instructions). The meaning of
each of these registers and a primer on the Java syntax for accessing them was given in
class and is part of the online lecture slides and Companion notes.

2. execute () uses the register values stored by the fetch stage to execute the instructions,
transforming the register file (i.e,. reg) and main memory (i.e., mem) appropriately.

Testing and Debugging Your Implementation
The simulator displays the current value of the register file, main memory and the internal
registers such as the pc and instruction registers. Use the simulator aggressively to test and debug.
If necessary, you can also set breakpoints in your CPU class, but most of the debugging can
probably be done without doing this just be examining how the machine state changes and by
paying careful attention to exception messages the simulator displays at the bottom of the
window.

The first thing you will want to do is to create a simple test assembly file with various forms of
the instructions that you implement. Use this file to test and debug each instruction in turn and
then use the snippets to finish your testing. It is sufficient to just get the snippets working and to
save exhaustive testing to next week.

If it helps you with your testing, the simulator has a command-line (i.e., non-GUI) interface.
This would allow you, for example, to build a test script to automate regression testing.

You can invoke the command line by typing

java -jar yourjar.jar -i cli -a sm213 -v student

Then type help to see a list of commands.

Suggested Implementation Approach
The most important aspect of any strategy for implementing complicated software is to test as
you go. Applied in this context, this might mean implementing each instruction in turn, first the
fetch stage and then the execute stage, testing each one before moving to the implementation of
the next.

You can test the fetch stage of an instruction by examining what displays in the CPU area at the
bottom left of the simulator. Take the first instruction, implement its fetch, enter the instruction
into the simulator, step the simulator through the instruction, and examine the value of these
CPU registers. Once you’ve got the fetch stage right for this instruction, move to execute. Once
you’ve implemented the execute stage for this instruction, load it into the simulator and step
through it again, this time examining the state of the register file and main memory.

You will likely find that implementing and debugging the first instruction is the hardest. Once
you have one working, you will see that adding others will follow a pattern that makes doing so
relatively simple (compared to the first one, at least).

Once you’ve tested every instruction (or at least the ones needed for a snippet), then run the
snippets to observe what they do.

Using the Simulator
You’ll get help using the simulator in the labs, but here are a few quick things that you will find
helpful.

1. You can edit instructions and data values directly in the simulator (including adding new
lines or deleting them).

2. The simulator allows you to place “labels” on code and data lines. This label can then be
used as a substitute for the address of those lines. For example, the variable’s a and b are
at addresses 0x1000 and 0x2000 respectively, but can just be referred to using the labels a
and b. Keep in mind, however, that this is just an simulator/assembly-code trick, the
machine instructions still have the address hardcoded in them. You can see the machine
code of each instruction to the left of the instructions in the memory image portion of the
instruction pane.

3. You can change the program counter (i.e., pc) value by double-clicking on an instruction.
And so, if you want to execute a particular instruction, double click it and then press the
“Step” button. The instruction pointed to by the pc is coloured green.

4. Memory locations and registers read by the execution of an instruction are coloured blue
and those written are coloured red. With each step of the machine the colours from
previous steps fade so that you can see locations read/written by the past few instructions
while distinguishing the cycle in which they were accessed.

5. Instruction execution can be animated by clicking on the “Show Animation” button and
then single stepping or running slowing.

Executing the Snippets
Once you have your implementation of the Simulator for these instructions working, the fun has
only just begun. You now execute each of this week’s snippets in the simulator to see what
happens when they run. For this week, all that is required is that you single step through each of
the snippets and observe what changes in the register file and/or main memory as the result of
each instruction. Carefully record your observations to document what you do.

Material Provided
The file code.zip includes the Java, C and assembly versions of snippets 1-3.

What to Hand In
Use the handin program to hand in the following three files (which can be combined into a single
zip file for using the web-based handin). Please do not hand in any other files. In particular, do
not hand in your entire Eclipse workspace, do not hand in the entire source tree for the
simulator, and do not hand in any class files.

1. A single file called “README.txt” that includes your name, student number, four-digit
cs-department undergraduate id (e.g., the one that’s something like a0b1), and all written
material required by the assignment as listed below (items 4, 5, and 6).

2. Your CPU.java that implements the instructions listed above (or at least those that are
needed to run the snippets).

3. The assembly program you used to test the instructions (a good name for it would be
testlab2.s).

4. In the README.txt file, include a description of the test procedure you followed and the
result. Did all of the tests succeed? Does your implementation work?

5. In the README.txt file, include a written description of the key things you noted about
the machine execution while running snippets S1, S2 and S3.

6. In the README.txt file, include a careful explanation of why the C statement *c = c[3] is
equivalent to c[3] = c[6] in S3-C-pointer-math using the original value of c by noting
precisely what happens in the simulation for the relevant assembly instructions. In the
quiz associated with this lab, you may be asked to provide a similar explanation for a
similar program (but without the aid of the simulator) and so take your time here to be
sure you really understand this.

 The handin assignment directory name is a2.

