Introduction to Computer Systems

Unit 2e
The Operating System

Readings for Next Two Lectures

Text

* Exceptional Control Flow: Processes, System Call Error Handling
* VM as a Tool for Memory Protection

* 2nd edition: 8.2, 8.3, 9.5

e 1st edition: 8.2, 8.3, 10.5

Implementing the System Abstractions

We’'ve got some cool abstractions
virtual processors (threads)
virtual memory
processes
authenticated users
file systems

Inter-process and network communication

What properties do we want from their implementation

encapsulation of implementation by an interface
failure and security isolation

programming-language heterogeneity

We’ve got a problem ...

Hardware Enforced Encapsulation

Goal

» define a set of interfaces (APIs) whose implementations are protected
* implementation code and data can only be accessed through interface

Obstacle

* can not use language protection without excluding languages like C

Use Hardware for Protection

e virtual memory already provides a way to protect memory

* data in one address space can not even be named by thread in another
® S0, we’ve got the protected implementation part

o we’ll need to add the interface part

The Operating System —

The operating system is

* a C/assembly program

* implements a set of abstractions for applications

* it encapsulates the implementation of these abstractions, including hardware

The Operating System’s Address Space

¢a

part of every application’s page table is reserved for the OS

* all code and data of OS is part of every page table (exact copies)

* and so the operating system is part of every application’s address space

Dual Protection Domains

* each address space splits into application and system protection domain

°C
°*WwW

*W

PU can run in one of two modes: user and kernel

nen in user mode, the OS part of virtual memory is inaccessible

nen in kernel mode, all of virtual memory is accessible

Implementing Hardware Encapsulation

Hardware |
mode register (user or kernel) = boolean isKernelMode;
certain instructions only legal in kernel mode
page table entries have protection flag (user or kernel)
attempting to access a kernel page while in user mode causes fault
special instructions for switching between user and kernel modes

Translation
class PageTableEntry {
boolean isValid;
boolean isKernel;
int translate (int va) { } int pfn;
intvpn =va>>> 12;

int offset = va & Oxfff;

if (pte[vpn].isValid && (isKernelMode || !pte[vpn].isKernel))
return pte[vpnl.pfn << 12 | offset;

else
throw new lllegalAddressException (va);

}

Protected Procedure Call

Switching from User Mode to Kernel Mode must be protected
OS has a fixed set of “entry points”, its public API
an application can call any of these entry points, but no others
when in kernel mode the application can access anything
so, application can only switch to kernel mode after calling entry point
but, even entry points are in inaccessible memory

Implementing Protected Calls
OS boot sets up entry-point jump table in kernel memory
jump table is indexed by system call number and stores procedure address
system call instruction changes mode and jumps through jump table
in IA32 this instruction is called “int 80” (i.e., interrupt number 0x80)
this works like an |O-Controller interrupt, it transfers control to interrupt-handler
but this also switches the processor into kernel mode (all interrupts do this)

movl $1, %eax # system call number (exit)
int $0x80 # interrupt 80 is a system call

Implementing Protected Call Instruction

Two special hardware registers

boolean isKernelMode
void (**systemCallTable)();

Initialized at OS boot time

isKernelMode = true;
systemCallTable = malloc (sizeof (void) * MAX_SYS_CALL_NUM);

systemCallTable[0] = syscall;
systemCallTable[1] = exit;
systemCallTable[2] = fork;
systemCallTable[3] = read;

Protected call instruction, assuming syscall number is in rO

sysCallINum = r[0];

if (sysCallNum >= 0 && sysCallINum <= MAX_SYSCALL_NUM) {
isKkernelMode = true;
pcC = systemCallTable [sysCalINum];

} else
throw new lllegalSystemCall ();

|O-Controller interrupts revisited ...

Setting Up Other Protection Domains

Any application can be a protection domain

we often call them “servers” or “daemons”

Encapsulation

the application’s address space is private

Public interface
iImplemented manually in application using message-passing
OS provides Inter-process Communication (IPC) interface (send/receive)
server sets up “communication endpoint” and waits to receive messages
callers send messages to request the server to perform a protected function
send/receive are system calls

Calling a server
server calls receive, traps to the OS and blocks there

caller calls send, traps to OS
OS context switches to server, and unblocks server

Summary

Single System Image
hardware implements a set of instructions needed by compilers
compilers translate programs into these instructions
translation assumes private memory and processor

Threads

an abstraction implemented by software to manage asynchrony and concurrency
provides the illusion of single processor to applications
differs from processor in that it can be stopped and restarted

Virtual Memory
an abstraction implemented by software and hardware

provides the illusion of a single, private memory to application
not all data need be in memory, paged in on demand

Hardware Enforced Encapsulation

kernel mode register and VM mapping restriction
allows OS to export a public interface and to encapsulate (hide) the implementation

10

