
CPSC 213
Introduction to Computer Systems

Unit 2e

The Operating System

1

Readings for Next Two Lectures

‣Text
• Exceptional Control Flow: Processes, System Call Error Handling

• VM as a Tool for Memory Protection

• 2nd edition: 8.2, 8.3, 9.5

• 1st edition: 8.2, 8.3, 10.5

2

Implementing the System Abstractions

‣We’ve got some cool abstractions
• virtual processors (threads)

• virtual memory

• processes

• authenticated users

• file systems

• inter-process and network communication

‣What properties do we want from their implementation
• encapsulation of implementation by an interface

• failure and security isolation

• programming-language heterogeneity

‣We’ve got a problem ...

3

Hardware Enforced Encapsulation

‣Goal
• define a set of interfaces (APIs) whose implementations are protected

• implementation code and data can only be accessed through interface

‣Obstacle
• can not use language protection without excluding languages like C

‣Use Hardware for Protection
• virtual memory already provides a way to protect memory

• data in one address space can not even be named by thread in another

• so, we’ve got the protected implementation part

• we’ll need to add the interface part

4

The Operating System

‣The operating system is
• a C/assembly program

• implements a set of abstractions for applications

• it encapsulates the implementation of these abstractions, including hardware

‣The Operating System’s Address Space
• a part of every application’s page table is reserved for the OS

• all code and data of OS is part of every page table (exact copies)

• and so the operating system is part of every application’s address space

‣Dual Protection Domains
• each address space splits into application and system protection domain

• CPU can run in one of two modes: user and kernel

• when in user mode, the OS part of virtual memory is inaccessible

• when in kernel mode, all of virtual memory is accessible

5

Implementing Hardware Encapsulation

‣Hardware
• mode register (user or kernel)

• certain instructions only legal in kernel mode

• page table entries have protection flag (user or kernel)

• attempting to access a kernel page while in user mode causes fault

• special instructions for switching between user and kernel modes

‣Translation

boolean isKernelMode;

int translate (int va) {
 int vpn = va >>> 12;
 int offset = va & 0xfff;
 if (pte[vpn].isValid && (isKernelMode || !pte[vpn].isKernel))
 return pte[vpn].pfn << 12 | offset;
 else
 throw new IllegalAddressException (va);
}

class PageTableEntry {
 boolean isValid;
 boolean isKernel;
 int pfn;
}

6

Protected Procedure Call

‣ Switching from User Mode to Kernel Mode must be protected
• OS has a fixed set of “entry points”, its public API

• an application can call any of these entry points, but no others

• when in kernel mode the application can access anything

• so, application can only switch to kernel mode after calling entry point

• but, even entry points are in inaccessible memory

‣ Implementing Protected Calls
• OS boot sets up entry-point jump table in kernel memory

• jump table is indexed by system call number and stores procedure address

• system call instruction changes mode and jumps through jump table

• in IA32 this instruction is called “int 80” (i.e., interrupt number 0x80)

• this works like an IO-Controller interrupt, it transfers control to interrupt-handler

• but this also switches the processor into kernel mode (all interrupts do this)

movl $1, %eax # system call number (exit)
int $0x80 # interrupt 80 is a system call

7

‣ Implementing Protected Call Instruction

boolean isKernelMode
void (**systemCallTable)();

sysCallNum = r[0];
if (sysCallNum >= 0 && sysCallNum <= MAX_SYSCALL_NUM) {
 isKernelMode = true;
 pc = systemCallTable [sysCallNum];
} else
 throw new IllegalSystemCall ();

Two special hardware registers

Initialized at OS boot time

isKernelMode = true;
systemCallTable = malloc (sizeof (void) * MAX_SYS_CALL_NUM);
systemCallTable[0] = syscall;
systemCallTable[1] = exit;
systemCallTable[2] = fork;
systemCallTable[3] = read;
...

Protected call instruction, assuming syscall number is in r0

IO-Controller interrupts revisited ...
8

‣Any application can be a protection domain
• we often call them “servers” or “daemons”

‣Encapsulation
• the application’s address space is private

‣Public interface
• implemented manually in application using message-passing

• OS provides Inter-process Communication (IPC) interface (send/receive)

• server sets up “communication endpoint” and waits to receive messages

• callers send messages to request the server to perform a protected function

• send/receive are system calls

‣Calling a server
• server calls receive, traps to the OS and blocks there

• caller calls send, traps to OS

• OS context switches to server, and unblocks server

Setting Up Other Protection Domains

9

Summary

‣ Single System Image
• hardware implements a set of instructions needed by compilers

• compilers translate programs into these instructions

• translation assumes private memory and processor

‣ Threads
• an abstraction implemented by software to manage asynchrony and concurrency

• provides the illusion of single processor to applications

• differs from processor in that it can be stopped and restarted

‣ Virtual Memory
• an abstraction implemented by software and hardware

• provides the illusion of a single, private memory to application

• not all data need be in memory, paged in on demand

‣ Hardware Enforced Encapsulation
• kernel mode register and VM mapping restriction

• allows OS to export a public interface and to encapsulate (hide) the implementation

10

