Introduction to Computer Systems

Text

*2nd: 12.4-12.5, 12.6, parts of 12.7
¢ 1st: 13.4-13.5, (no equivalent to 12.6), parts of 13.7

Readings for These Next Four Lectures

* Shared Variables in Threaded Programs - Synchronizing Threads with
Semaphores, Using Threads for Parallelism, Other Concurrency Issues

Synchronization

CPUSs Memory Bus

(Cores) Memory

disk-read thread
disk controller

We invented Threads to
* exploit parallelism

do things at the same time on different processors
do something else while waiting for 1/0 Controller
But, we now have two problems

* coordinating access to memory (variables) shared by multiple threads

« control flow transfers among threads (wait until notified by another thread)
Synchronization is the mechanism threads use to

 ensure mutual exclusion of critical sections

* manage asynchrony

« wait for and notify of the occurrence of events

The Importance of Mutual Exclusion

Shared data

* data structure that could be accessed by multiple threads

* typically concurrent access to shared data is a bug

Critical Sections

* sections of code that access shared data

Race Condition

* simultaneous access to critical section section by multiple threads

« conflicting operations on shared data structure are arbitrarily interleaved

¢ unpredictable (non-deterministic) program behaviour — usually a bug (a serious bug)

Mutual Exclusion

* a mechanism implemented in software (with some special hardware support)
* to ensure critical sections are executed by one thread at a time

* though reading and writing should be handled differently (more later)

For example

* consider the implementation of a shared stack by a linked list ...

Unit 2c
. .
Synchronization
Stack implementation
void push_st (struct SE* e) { struct SE {
e->next = top; struct SE* next;
top =e; 3
struct SE *top=0;
struct SE* pop_st () {
struct SE* e = top;
top = (top)? top->next: 0;
return e;
}
Sequential test works
void push_driver (long int n) { void pop_driver (long int n) {
struct SE* e; struct SE* e;
while (n--) while (n--) {
push ((struct SE¥) malloc (...)); do {
e = pop ();
} while (le);
free (e);
push_driver (n); }
pop_driver (n); }
assert (top==0);

concurrent test doesn’t always work

et = uthread_create ((void* (*)(void*)) push_driver, (void*) n);
dt = uthread_create ((void* (*)(void*)) pop_driver, (void*) n);
uthread_join (et);
uthread_join (dt);
assert (top==0);

malloc: *** error for object 0x1022a8fa0: pointer being freed was not allocated

what is wrong?

void push_st (struct SE* e) {
e->next = top; struct SE* e = top;
top =e; top = (top)? top->next: 0;
} return e;

}

struct SE* pop_st () {

The bug

e push and pop are critical sections on the shared stack

e they run in parallel so their operations are arbitrarily interleaved
* sometimes, this interleaving corrupts the data structure

to

void push_st (struct SE* e) {

struct SE* pop_st () {
e->next = top;

struct SE* e = top;

top =e; top = (top)? top->next: 0;
return e;
1. e->next = top
2.e =top
3. top = top->next
4. return e
6.top =e 5. free e

Mutual Exclusion using locks

lock semantics

*alock is either held by a thread or available
* at most one thread can hold a lock at a time

* a thread attempting to acquire a lock that is already held is forced to wait

lock primitives
*lock acquire lock, wait if necessary
eunlock release lock, allowing another thread to acquire if waiting

using locks for the shared stack

void push_cs (struct SE* e) {

struct SE* pop_cs () {
lock (&aLock);

struct SE* e;

push_st (e); lock (&aLock);
unlock (&aLock); e = pop_st ();
} unlock &aLock);
return e;

Implementing Simple Locks

Here’s a first cut
* use a shared global variable for synchronization

¢ lock loops until the variable is 0 and then sets it to 1
* unlock sets the variable to 0

int lock = 0; void lock (int* lock) {
while (*lock==1) {}
*lock = 1;

}

void unlock (int* lock) {
*lock = 0;
}

*why doesn’t this work?

We now have a race in the lock code
Thread A Thread B

void lock (int* lock) {
while (*lock==1) {}
*lock = 1;

} }

void lock (int* lock) {
while (*lock==1) {}
*lock = 1;

1. read *lock==0, exit loop
2. read *lock==0, exit loop

3.*lock =1
4. return with lock held

5. *lock = 1, return
6. return with lock held

Both threads think they hold the lock ...

The race exists even at the machine-code level
* two instructions acquire lock: one to read it free, one to set it held
* but read by another thread and interpose between these two

Id $lock, r1

Id $1, r2
loop: Id (1), 10 lock appears free
beq free

br loop Another thread

( reads TocK

free: st r2, (rl) acquire lock

Thread A Thread B
Id (r1), r0

Id (r1), rO
st r2, (rl)

st r2, (rl)

Atomic Memory Exchange Instruction

We need a new instruction

* to atomically read and write a memory location

= with no intervening access to that memory location from any other thread

allowed
Atomicity

¢ is a general property in systems

*where a group of operations are performed as a single, indivisible unit

The Atomic Memory Exchange
* one type of atomic memory instruction (there are other types)
* group a load and store together atomically

* exchanging the value of a register and a memory location

Name Semantics A bly

atomic exchange rivl < mi[r[a]] xchg (ra), rv
mirfa]] < rlv]

Implementing Atomic Exchange

Memory Bus
CPUs e S

(Cores) Memory

Can not be implemented just by CPU

* must synchronize across multiple CPUs

* accessing the same memory location at the same time
Implemented by Memory Bus

* memory bus synchronizes every CPU’s access to memory

» the two parts of the exchange (read + write) are coupled on bus
* bus ensures that no other memory transaction can intervene

« this instruction is much slower, higher overhead than normal read or write

Spinlock
A Spinlock is

¢ also called “busy waiting” lock

Implementation using Atomic Exchange
* spin on atomic memory operation
« that attempts to acquire lock while
* atomically reading its old value

Id  S$lock, %rl

Id $1, %r0

loop: xchg (%r1), %r0
beq %r0, held

br loop
held:

* but there is a problem: atomic-exchange is an expensive instruction

*a lock where waiter spins on looping memory reads until lock is acquired

Spin first on normal read

* normal reads are very fast and efficient compared to exchange
*use normal read in loop until lock appears free

*when lock appears free use exchange to try to grab it

« if exchange fails then go back to normal read

Id $lock, %r1
loop: Id  (%r1), %r0
beq %r0, try

br loop

try: Id $1, %r0
xchg (%r1), %r0
beq %r0, held
br loop

held:

Busy-waiting pros and cons
» Spinlocks are necessary and okay if spinner only waits a short time
* But, using a spinlock to wait for a long time, wastes CPU cycles

Blocking Locks

If a thread may wait a long time
« it should block so that other threads can run

* it will then unblock when it becomes runnable (lock available or event notification)

Blocking locks for mutual exclusion

« if lock is held, locker puts itself on waiter queue and blocks

e when lock is unlocked, unlocker restarts one thread on waiter queue
Blocking locks for event notification

 waiting thread puts itself on a a waiter queue and blocks

* notifying thread restarts one thread on waiter queue (or perhaps all)
Implementing blocking locks presents a problem

¢ lock data structure includes a waiter queue and a few other things

» data structure is shared by multiple threads; lock operations are critical sections
* mutual exclusion can be provided by blocking locks (they aren’t implemented yet)
* and so, we need to use spinlocks to implement blocking locks (this gets tricky)



Implementing a Blocking Lock

Lock data structure

struct blocking_lock {
int spinlock;
int held;
uthread_queue_t waiter_queue;

The lock operation

void lock (struct blocking_lock I) {
spinlock_lock (&I->spinlock);
while (I->held) {
enqueue (&waiter_queue, uthread_self ();
spinlock_unlock (&I->spinlock);
uthread_switch (ready_queue_dequeue (), TS_BLOCKED);
spinlock_lock (&I->spinlock);

}
I->held = 1;
spinlock_unlock (&I->spinlock);

The unlock operation

void unlock (struct blocking_lock 1) {
uthread_t* waiter_thread;

spinlock_lock (&I->spinlock);

I->held = 0;

waiter_thread = dequeue (&I->waiter_queue);
spinlock_unlock (&->spinlock);
waiter_thread->state = TS_RUNABLE;
ready_queue_enqueue (waiter_thread);

Blocking Lock Example Scenario

Thread A Thread B Thread C
1. calls lock()
3. grabs spinlock 2.callslock)
5. acquires blocking lock 4. tries to grab spinlock, but spins
6. releases spinlock
7. returns from lock() 3. grabs spinlock o

4. queues itself on watier list

5. releases spinlock

6. blocks

8. scheduled

9. calls unlock()

10. grabs spinlock

11. releases lock

12. restarts a Thread B
13. releases spinlock
14. returns from unlock()
15. yields, blocks or stops
16. scheduled

17. grabs spinlock

18. acquires blocking lock
19. releases spinlock

20. returns from lock()

g thread running
s SPinlock held
blocking lock held

v

Blocking vs Busy Waiting

Spinlocks

* Pros and Cons

- uncontended locking has low overhead

Blocking Locks

*Pros and Cons

- uncontended locking has higher overhead
- contending for lock has high cost - contending for lock has no cost
*Use when * Use when
- critical section is small - lock may be head for some time
- contention is expected to be minimal - when contention is high
- event wait is expected to be very short - when event wait may be long

- when implementing Blocking locks

Monitors and Condition Variables

Introduced by Tony Hoare and Per Brinch Hansen circ. 1974
* adds wait-signal synchronization to mutual exclusion

¢ basis for synchronization primitives in Java etc.

Monitor

* is a mutual-exclusion lock

* primitives are enter (lock) and exit (unlock)

 access for reading vs access for writing?

Condition Variable

 can only be accessed from inside of a monitor (i.e, with monitor lock held)

* wait blocks until a subsequent signal operation on the variable

* notify unblocks waiter, but continues to hold monitor (Hansen)
signal unblocks waiter and atomically transfer monitor to waiter (Hoare)
* notify_all unblocks all waiters and continues to hold monitor (broadcast)

* names signal and notify used interchangeably; Hansen semantics universal

Waiting and Signalling Basics

Basic formulation
* one thread enters monitor and may wait for a condition to be established
monitor {

while (x)
wait ();
}

* another thread enters monitor, establishes condition and signals waiter

monitor {
X = true;
signal ();
}

Waiting exits the monitor

* before waiter blocks, it exits monitor to allow other threads to enter

* when wait unblocks, it re-enters monitor, waiting/blocking to enter if necessary
* note: other threads may have been in monitor between wait call and return

Drinking Beer Example

Beer pitcher is shared data structure with these operations
° pour

e refill

Implementation goal

* synchronize access to the shared pitcher

* pouring from an empty pitcher requires waiting for it to be filled

«filling pitcher releases waiters

void pour () { void refill (int n) {

monitor { monitor {
if (glasses==0) for (int i=0; i<n; i++) {
wait; glasses++;
glasses--; signal;

m

23

On closer inspection, what are we assuming about signal?

void pour () { void refill (int n) {

monitor { monitor {
if (glasses==0) for (inti=0; i<n; i++) {
wait; glasses++;
glasses--; signal;

B 1

» Consider this potential execution. Is it legal? Is it problematic?

Thread A Thread B Thread C
1. call pour ()
2. enter monitor
3. glasses ==
4. wait, exiting monitor
1. call refill (1)
2. enter monitor 1. call pour()
3. glasses = 1 - call p
. 2. wait to enter monitor
4. signal A
5. exit monitor
5. awoken
6. wait to enter monitor 8. enter monitor
4. glasses--
7. exit monitor

7. enter monitor
8. glasses--
9. exit monitor

What is the value of glasses?
What is needed to fix this problem?

Blocking Signal — Hoare Semantics

Tony Hoare proposed that signal block and pass monitor to waiter

void pour () { void refill (int n) {

monitor { monitor {
if (glasses==0) for (int i=0; i<n; i++) {
wait; glasses++;
glasses—-; signal;
B }})
Thread A Thread B Thread C
1. call pour ()
2. enter monitor
3. glasses ==
4. wait, exiting monitor call refill (1)
. enter monitor
1. call pour()

N

. signal A, exiting monitor - wait to enter monitor

1
2
3. glasses = 1
4
5. wait to enter monitor

. awoken inside of monitor
glasses--
. exit monitor

©®o

. enter monitor
glasses==0
. wait, exiting monitor

~NBsw

. enter monitor
. exit monitor

~N o

But, implementing Hoare Semantics has high overhead
« each blocking/unblocking (scheduling) of a thread is costly
* blocking in signal leads to significant scheduling overhead

what if refill(10) is called with 10 thirsty waiters?

void refill (int n) {

monitor {
for (int i=0; i<n; i++) { * give up monitor
glasses++; * block until waiter finishes
signal; (_—_————-/ * then reenter monitor
H * repeat ...
3. glasses++
4. signal exiting monitor

o

. wait to enter monitor
5. awoken inside of monitor

8. glasses--

9. exit monitor

refiller blocks/unblocks 10 times

enter monitor
glasses++

signal exiting monitor
wait to enter monitor

©eNo

% 5. awoken inside of monitor
6. glasses--
9 . exit monitor

Non-Blocking Notify — Hansen Semantics

Per Brinch Hansen propose that signal not block

» the non-blocking signal is normally called notify

* lower overhead; fewer block/unblock; this is what everyone does
* but, this requires changing the waiter code

- can not assume that wait condition holds after wait returns

- may have to wait again, if another thread consumed the refill

void pour () { void refill (int n) {

monitor { monitor {
while (glasses==0) for (inti=0; i<n; i++) {
wait; glasses++;
glasses--; notify;

B m

or notify_all to awaken all threads

void refill (int n) {

monitor {
* may wakeup too many glasses +=n;
tify_all;
* but, threads re-check glasses==0, so it’s okay );;w -

The Monitor and Condition Variables

Programs can have multiple independent monitors
* 50 a monitor implemented as a “variable” (a struct really)

uthread_monitor_t* beer = uthread_monitor_create ();

Monitors may have multiple independent conditions
* s0 a condition is also a variable, connected to its monitor

uthread_cv_t* not_empty = uthread_cv_create (beer);
uthread_cv_t* warm = uthread_cv_create (beer);

void pour (int isEnglish) {
uthread_monitor_enter (beer);
while (glasses==0 || (isEnglish && temp<15)) {
if (glasses==0)
uthread_cv_wait (not_empty);
if (isEnglish && temp < 15)
uthread_cv_wait (warm);

glasses—-;
uthread_monitor_exit (beer);

}

Using Condition Variables for Disk Read

Blocking read
* call async read as before
= but now block on condition variable that is given to completion routine

void read (char* buf, int bufSize, int blockNo) {
uthread_monitor_t* mon = uthread_monitor_create ();
uthread_cv_t*  cv = uthread_cv_create (mon);
uthread_monitor_enter (mon);
asyncRead (buf, bufSize, readComplete, mon, cv);
uthread_cv_wait (cv);
uthread_monitor_exit (mon);

}
Read completion

« called by disk ISR as before
* but now notify the condition variable, restarting the blocked read cal

void readComplete (uthread_monitor_t* mon, uthread_cv_t* cv) {
uthread_monitor_enter (mon);
uthread_cv_notify (cv);
uthread_monitor_exit (mon);

Shared Queue Example

Unsynchronized Code

void enqueue (uthread_queue_t* queue, uthread_t* thread) {
thread->next = 0;
if (queue->tail)
queue->tail->next = thread;
queue->tail = thread;
if (queue->head==0)
queue->head = queue->tail;

}

uthread_t* dequeue (uthread_queue_t* queue) {
uthread_t* thread;
if (queue->head) {
thread = queue->head;
queue->head = queue->head->next;
if (queue->head==0)
queue->tail=0;
}else
thread=0;
return thread;

Adding Mutual Exclusion

void enqueue (uthread_queue_t* queue, uthread_t* thread) {
uthread_monitor_enter (&queue->monitor);
thread->next = 0;
if (queue->tail)
queue->tail->next = thread;
queue->tail = thread;
if (queue->head==0)
queue->head = queue->tail;
uthread_| itor_exit (& > itor);

uthread_t* dequeue (uthread_queue_t* queue) {
uthread_t* thread;
uthread_monitor_enter (&queue->monitor);
if (queue->head) {
thread = queue->head;
queue->head = queue->head->next;
if (queue->head==0)
queue->tail=0;
}else
thread=0;
uthread_monitor_exit (&queue->monitor);
return thread;

}

Now have dequeue wait for item if queue is empty

* classical producer-consumer model with each in different thread

- e.g., producer enqueues video frames consumer thread dequeues them for display

void enqueue (uthread_queue_t* queue, uthread_t* thread) {
uthread_monitor_enter (&queue->monitor);
thread->next = 0;
if (queue->tail)
queue->tail->next = thread;
queue->tail = thread;
if (queue->head==0)
queue->head = queue->tail;
uthread_cv_notify (&queue->not_empty);
uthread_monitor_exit (&queue->monitor);
}

uthread_t* dequeue (uthread_queue_t* queue) {
uthread_t* thread;
uthread_monitor_enter (&queue->monitor);
while (queue->head==0)
uthread_cv_wait (&queue->not_empty);
thread = queue->head;
queue->head = queue->head->next;
if (queue->head==0)
queue->tail=0;
uthread_monitor_exit (&queue->monitor);
return thread;



Some Questions About Example

uthread_t* dequeue (uthread_queue_t* queue) {
uthread_t* thread;
uthread_monitor_enter (&queue->monitor);
while (queue->head==0)
uthread_cv_wait (&queue->not_empty);
thread = queue->head;
queue->head = queue->head->next;
if (queue->head==0)
queue->tail=0;
uthread_monitor_exit (&queue->monitor);
return thread;

}
Why does dequeue have a while loop to check for non-empty?
Why must condition variable be associated with specific monitor?

Why can’t we use condition variable outside of monitor?
* this is called a naked use of the condition variable

* this is actually required sometimes ... can you think where (BONUS)?
Experience with Processes and Monitors with Mesa, Lampson and Redell, 1980

Implementing Condition Variables

Some key observations

» wait, notify and notify_all are called while monitor is held

* the monitor must be held when they return

* wait must release monitor before locking and re-acquire before returning
Implementation

*in the lab

*look carefully at the implementations of monitor enter and exit

* understand how these are similar to wait and notify

* use this code as a guide

*you also have the code for semaphores, which you might also find helpful

Reader-Writer Monitors

If we classify critical sections as

e reader if only reads the shared data

if updates the shared data

Then we can weaken the mutual exclusion constraint
* writers require exclusive access to the monitor

* writer

* but, a group of readers can access monitor concurrently
Reader-Writer Monitors
* monitor state is one of
free, held-for-reading, or held
* monitor_enter ()
- waits for monitor to be free then sets its state to held
* monitor_enter_read_only ()
- waits for monitor to be free or held-for-reading, then sets is state to head-for-reading
- increment reader count
* monitor_exit ()
- if held, then set state to free

- if held-for-reading, then decrement reader count and set state to free if reader count is 0

Policy question

* monitor state is head-for-reading

e thread A calls monitor_enter() and blocks waiting for monitor to be free

e thread B calls monitor_enter_read_only(); what do we do?

Disallowing new readers while writer is waiting

*is the fair thing to do

e thread A has been waiting longer than B, shouldn’t it get the monitor first?
Allowing new readers while writer is waiting

*may lead to faster programs by increasing concurrency

« if readers must WAIT for old readers and writer to finish, less work is done
What should we do

e normally either provide a fair implementation

e or allow programmer to choose (that’s what Java does)

Semaphores

Introduced by Edsger Dijkstra for the THE System circa 1968
e recall that he also introduced the “process” (aka “thread”) for this system
» was fearful of asynchrony, Semaphores synchronize interrupts

* synchronization primitive provide by UNIX to applications

A Semaphore is

* an atomic counter that can never be less than 0

* attempting to make counter negative blocks calling thread

P(s)

* try to decrement s (prolaag for probeer te varlagen in Dutch)

¢ atomically blocks until s >0 then decrement s

Vi)

e increment s (verhogen in Dutch)

* atomically increase s unblocking threads waiting in P as appropriate

Using Semaphores to Drink Beer

Use semaphore to store glasses head by pitcher
* set initial value of empty when creating it

uthread_semaphore_t* glasses = uthread_create_semaphore (0);

Pouring and refilling don’t require a monitor

void pour () { void refill (int n) {
uthread_P (glasses); for (inti=0; i<n; i++)
} uthread_V (glasses);
}

Getting the beer warm, however doesn’t fit quite as nicely
*need to keep track of the number of threads waiting for the warm beer
then call V that number of times

e this is actually quite tricky

Other ways to use Semaphores

Asynchronous Operations
« create outstanding_request semaphore
e async_read: P (outstanding_request)

e completion interrupt: V (outstanding_request)

Rendezvous

* two threads wait for each other before continuing

e create a semaphore for each thread initialized to 0
void thread_a () {

uthread_V (a);
uthread_P (b);

void thread_b () {
uthread_V (b);
uthread_P (a);

} What if you reversed order of V and P?

Barrier (local)
¢ In a system of 1 parent thread and N children threads
* All threads must arrive at barrier before any can continue

void* add (void* arg) {
struct arg_tuple* tuple = (struct arg_tuple*) arg;
tuple->result = tuple->arg0 + tuple->argl;
uthread_V (tuple->barrier);
return 0;

uthread_semaphore_t* barrier = uthread_semaphore_create (0);
struct arg_tuple a0 = {1,2,0,barrier};

struct arg_tuple al = {3,4,0,barrier};

uthread_init (1);

uthread_create (add, &a0);

uthread_create (add, &al);

uthread_P (barrier);

uthread_P (barrier);

printf ("%d %d\n", a0.result, al.result);

Barrier (global)
¢ In a system of N threads with no parent
* All threads must arrive, before any can continue ... and should work repeatedly

Implementing Monitors
e initial value of semaphore is 1
*lock is P()

* unlock is V()

Implementing Condition Variables

« this is the warm beer problem

« it took until 2003 before we actually got this right
o for further reading

- Andrew D. Birrell. “Implementing Condition Variables with Semaphores”, 2003.

- Google “semaphores condition variables birrell”

Implementing Semaphores

Data structure

struct uthread_semaphore {

int count;

spinlock_t spinlock;
uthread_queue_t waiter_queue;
I3

V(s)

void uthread_V (uthead_semaphore_t* sem) {
uthread_t* waiter_thread;

spinlock_lock (&sem->spinlock);
sem->counter += 1;
waiter_thread = dequeue (&sem->waiter_queue);
if (waiter_thread)
uthread_start (waiter_thread);
spinlock_unlock (&sem->spinlock);

}

P(s)

void uthread_P (uthread_semaphore_t* sem) {
uthread_t* waiter_thread;

spinlock_lock (&sem->spinlock);
while (sem->count < 1) {
enqueue (&sem->waiter_queue, uthread_self ());
spinlock_unlock (&sem->spinlock);
uthread_stop (TS_BLOCKED);
spinlock_lock (&sem->spinlock);

sem->count -= 1;
spinlock_unlock (&sem->spinlock);

Problems with Concurrency

Race Condition
* competing, unsynchronized access to shared variable
- from multiple threads
- at least one of the threads is attempting to update the variable
* solved with synchronization
- guaranteeing mutual exclusion for competing accesses
- but the language does not help you see what data might be shared --- can be very hard

Deadlock
* multiple competing actions wait for each other preventing any to complete
* what can cause deadlock?

- MONITORS

- CONDITION VARIABLES

- SEMAPHORES

The Dining Philosophers Problem

Formulated by Edsger Dijkstra to explain deadlock (circa 1965)
* 5 computers competed for access to 5 shared tape drives
Re-told by Tony Hoare
5 philosophers sit at a round table with fork placed in between each
fork to left and right of each philosopher and each can use only these 2 forks
* they are either eating or thinking
- while eating they are not thinking and while thinking they are not eating
they never speak to each other
* large bowl! of spaghetti at centre of table requires 2 forks to serve
- digin ...
* deadlock
- every philosopher holds fork to left waiting for fork to right (or vice versa)
- how might you solve this problem?
* starvation
- even if some philosophers eat, some could go hungry if never get both forks
* livelock

deadlock avoided, but all philosophers still starve due to timing problem, special case of starvation

Avoiding Deadlock

Don’t use multiple threads

e you’ll have many idle CPU cores and write asynchronous code
Don’t use shared variables

¢ if threads don’t access shared data, no need for synchronization
Use only one lock at a time

» deadlock is not possible, unless thread forgets to unlock
Organize locks into precedence hierarchy

» each lock is assigned a unique precedence number

* before thread X acquires a lock i, it must hold all higher precedence locks
e ensures that any thread holding i can not be waiting for X
Detect and destroy

«if you can’t avoid deadlock, detect when it has occurred

* break deadlock by terminating threads (e.g., sending them an exception)

Synchronization in Java (5)

Monitors using the Lock interface
* a few variants allow interruptibility, just trying lock, ...

Lock I = ...; Lock | = ...;

I.lock 0; try {

try { l.lockInterruptibly ();
try {

} finally {
l.unlock (); }finally {

} l.unlock ();

}
} catch (InterruptedException ie) {}

* multiple-reader single writer locks

ReadWriteLock | = ...;
Lock rl = l.readLock ();
Lock wl = LwriteLock ();

Condition variables
e await is wait (replaces Object wait)

« signal or signalAll is Hansen “notify” (replaces Object notify, notifyAll)

class Beer {
Lock | =..;

Condition notEm’[’:‘t’y = l.newCondition ();
int glasses =0;

VIOId pour () throws InterruptedException {
lock 0;
try {
while (glasses==0)
notEmpty.await ();
?Iasses——;
} finaly {
l.unlock (;

}

void refill (int n) throws InterruptedException {
I.lock ();
try {
glasses +=n;
notEmpty.signalAll ();
}finaly {
l.unlock (;
W



» Semaphore class
e acquire () or acquire (n) is P() or P(n)
e release () or release (n) is V() or V(n)

class Beer {
Semaphore glasses = new Semaphore (0);

void pour () throws InterruptedException {
glasses.acquire ();

void refill (int n) throws InterruptedException {
glasses.release (n);

}

» Lock-free Atomic Variables
* AtomicX where X in {Boolean, Integer, IntegerArray, Reference, ...}

* atomic operations such as getAndAdd(), compareAndSet(), ...
e.g., x.compareAndSet (y,z) atomically sets x=z iff x==y and returns true iff set occurred

Lock-Free Atomic Stack in Java

Recall the problem with concurrent stack

void push_st (struct SE* e) { struct SE* pop_st () {
e->next = top; struct SE* e = top;
top =e; top = (top)? top->next: 0;
} return e;

}

*a pop could intervene between two steps of push, corrupting linked list

* we solved this problem using locks to ensure mutual exclusion
°now ... solve without locks, using atomic compare-and-set of top

class Element {
Element* next;

}

class Stack {
AtomcReference<Element> top;
Stack () {
top.set (NULL);
}

void push () {
Element t;
Element e = new Element ();
do{
t = top.get 0);
e.next =t;

} while ('top.compareAndSet (t, e)); 1 .
}
}

Synchronization Summary

Spinlock

© one acquirer at a time, busy-wait until acquired

* need atomic read-write memory operation, implemented in hardware
« use for locks held for short periods (or when minimal lock contention)
Monitors and Condition Variables

* blocking locks, stop thread while it is waiting

* monitor guarantees mutual exclusion

« condition variables wait/notify provides control transfer among threads
Semaphores

* blocking atomic counter, stop thread if counter would go negative
 introduced to coordinate asynchronous resource use

* use to implement barriers or monitors

© use to implement something like condition variables, but not quite
Problems, problems, problems

* race conditions to be avoided using synchronization

« deadlock/livelock to be avoided using synchronization carefully




