
CPSC 213
Introduction to Computer Systems

Unit 2b

Virtual Processors

1

Readings for These Next Four Lectures

‣Text
• Concurrent Programming With Threads

• 2nd: 12.3

• 1st: 13.3

2

The Virtual Processor

‣ Originated with Edsger Dijkstra in the THE Operating System
• in The Structure of the “THE” Multiprogramming System, 1968

‣ The Process (what we now call a Thread)

• a single thread of synchronous execution of a program
- the illusion of a single system such as the Simple Machine

• can be stopped and restarted
- stopped when waiting for an event (e.g., completion of an I/O operation)

- restarted with the event fires

• can co-exist with other processes sharing a single hardware processor
- a scheduler multiplexes processes over processor

- synchronization primitives are used to ensure mutual exclusion and for waiting and signalling

“I had had extensive experience (dating back to 1958) in making basic software dealing
with real-time interrupts, and I knew by bitter experience that as a result of the
irreproducibility of the interrupt moments a program error could present itself
misleadingly like an occasional machine malfunctioning. As a result I was terribly
afraid. Having fears regarding the possibility of debugging, we decided to be as
careful as possible and, prevention being better than cure, to try to prevent nasty bugs
from entering the construction.

This decision, inspired by fear, is at the bottom of what I regard as the group's main
contribution to the art of system design.”

3

Thread

‣An abstraction for execution
• looks to programmer like a sequential flow of execution, a private CPU

• it can be stopped and started, it is sometimes running and sometimes not

• the physical CPU thus now multiplexes multiple threads at different times

‣Creating and starting a thread
• like an asynchronous procedure call

• starts a new thread of control to execute a procedure

‣Stopping and re-starting a thread
• stopping a thread is called blocking

• a blocked thread can be re-started (i.e., unblocked)

‣ Joining with a thread
• blocks the calling thread until a target thread completes

• returns the return value of the target-thread’s starting procedure

• turns thread create back into a synchronous procedure call

foo

bar zot

join

bat
4

Threads in Java

‣Create a procedure that can be executed by a thread
• build a class that implements the Runnable interface

‣Create a thread to execute the procedure and start it

class ZotRunnable implements Runnable {
 Integer result, arg;
 ZotRunnable (Integer anArg) {
 arg = arg;
 }
 public void run () {
 result = zot (anArg);
 }
}

ZotRunnable zot = new ZotRunnable (0);
Thread t = new Thread (zot);
t.start ();

5

foo ();
ZotRunnable zot = new ZotRunnable (0);
Thread t = new Thread (zot);
t.start ();
bar ();
Integer result = null;
try {
 t.join ();
 result = zot.result;
} catch (InterruptedException ie) {
}
bat ();

‣Later join with thread to get zot’s return value

‣So that the entire calling sequence is
foo

bar zot

join

bat

Integer result;
try {
 t.join ();
 result = zot.result;
} catch (InterruptedException ie) {
 result = null;
}

6

‣Create an Executor Service
• to manage asynchronous calls in a pool of threads (here limited to 2)

‣Create a procedure that can be submitted to this Service
• build a class that implements the Callable interface

Executor Services in Java

ExecutorService ex = new ScheduledThreadPoolExecutor (2);

class ZotCallable implements Callable<Integer> {
 Integer arg;
 ZotCallable (Integer anArg) {
 arg = anArg;
 }
 public Integer call () {
 return zot (arg);
 }
}

7

‣Schedule execution of the procedure
• declare a Future variable to store the procedure’s result

• submit procedure’s callable object to the Executor Service

‣Then later get value of result future, blocking if necessary

‣Shutdown Executor Service before program terminates
• return from main does terminate the program until Executor is shutdown

Future<Integer> resultFuture = ex.submit (new ZotCallable (0));

Integer result = null;
try {
 result = resultFuture.get ();
} catch (InterruptedException ie) {
} catch (ExecutionException ee) {}

ex.shutdown ();

8

ExecutorService ex = new ScheduledThreadPoolExecutor (2);
foo ();
Future<Integer> resultFuture = ex.submit (new ZotCallable (0));
bar ();
Integer result = null;
try {
 result = resultFuture.get ();
} catch (InterruptedException ie) {
} catch (ExecutionException ee) {}
bat ();
ex.shutdown ();

‣So that the entire calling sequence is

foo

bar zot

join

bat

9

‣ Focusing on asynchronous call

‣ Advantages of Executor Service
• better management of result returned or exception thrown by asynchronous call

• precise thread management abstracted from application code

ZotRunnable zot = new ZotRunnable (0);
Thread t = new Thread (zot);
t.start ();
Integer result = null;
try {
 t.join ();
 result = zot.result;
} catch (InterruptedException ie) {
}

Future<Integer> resultFuture = ex.submit (new ZotCallable (0));
Integer result = null;
try {
 result = resultFuture.get ();
} catch (InterruptedException ie) {
} catch (ExecutionException ee) {} // if zot() threw an exception

Comparing Java’s Alternatives

10

UThread: A Simple Thread System for C

‣ The UThread Interface file (uthread.h)

‣ Explained
• uthread_t 	 	 	 is the datatype of a thread control block

• uthread_init 	 	 is called once to initialize the thread system

• uthread_create	 	 create and start a thread to run specified procedure

• uthread_yield	 	 temporarily stop current thread if other threads waiting

• uthread_join	 	 join calling thread with specified other thread

• uthread_detach		 indicate no thread will join specified thread

• uthread_self	 	 a pointer to the TCB of the current thread

struct uthread_TCB;
typedef struct uthread_TCB uthread_t;

void uthread_init ();
uthread_t* uthread_create (void* (*start_proc)(void*), void* start_arg);
void uthread_yield ();
void* uthread_join (uthread_t* thread);
void uthread_detach (uthread_t* thread);
uthread_t* uthread_self ();

11

Example Program using UThreads
void ping () {
 int i;
 for (i=0; i<100; i++) {
 printf ("ping %d\n",i); fflush (stdout);
 uthread_yield ();
 }
}

void pong () {
 int i;
 for (i=0; i<100; i++) {
 printf ("pong %d\n",i); fflush (stdout);
 uthread_yield ();
 }
}

void ping_pong () {
 uthread_create (ping, 0);
 uthread_create (pong, 0);
 while (1)
 uthread_yield ();
}

12

Implement Threads: Some Questions

‣The key new thing is blocking and unblocking
• what does it mean to stop a thread?

• what happens to the thread?

• what happens to the physical processor?

‣What data structures do we need

‣What basic operations are required

13

Implementing UThreads: Data Structures

‣Thread State
• running:	 register file and runtime stack

• stopped:	 Thread Control Block and runtime stack

‣Thread-Control Block (TCB)
• thread status: (NASCENT, RUNNING, RUNNABLE, BLOCKED, or DEAD)

• pointers to thread’s stack base and top of its stack

• scheduling parameters such as priority, quantum, pre-emptability etc.

‣Ready Queue
• list of TCB’s of all RUNNABLE threads

‣One or more Blocked Queues
• list of TCB’s of BLOCKED threads

14

Thread Data Structure Diagram

Ready Queue

r5

Stacks

TCBa
 RUNNING

TCBb
 RUNNABLE

TCBc
 RUNNABLE

Thread Control
Blocks

15

Thread Status DFA
Schedule

Yield

Schedule

B
lock

C
om

p
lete

Unblock

Join or Detach

Create

Nascent Running

Runnable

Blocked

DeadFreed

16

Implementing Threads: Thread Switch

‣Goal
• implement a procedure switch (Ta, Tb) that stops Ta and starts Tb

• Ta calls switch, but it returns to Tb

• example ...

‣Requires
• saving Ta’s processor state and setting processor state to Tb’s saved state

• state is just registers and registers can be saved and restored to/from stack

• thread-control block has pointer to top of stack for each thread

‣ Implementation
• save all registers to stack

• save stack pointer to Ta’s TCB

• set stack pointer to stack pointer in Tb’s TCB

• restore registers from stack

17

Thread Switch

Stacks

TCBa

TCBb

Thread Control
Blocks

Register File

2. Save stack top in A’s TCB
3. Restore B’s stack top to stack-pointer register
4. Restore registers from B’s stack

1. Save all registers to A’s stack

18

Example Code for Thread Switch

asm volatile ("pushq %%rbx\n\t"
 "pushq %%rcx\n\t"
 "pushq %%rdx\n\t"
 "pushq %%rsi\n\t"
 "pushq %%rdi\n\t"
 "pushq %%rbp\n\t"
 "pushq %%r8\n\t"
 "pushq %%r9\n\t"
 "pushq %%r10\n\t"
 "pushq %%r11\n\t"
 "pushq %%r12\n\t"
 "pushq %%r13\n\t"
 "pushq %%r14\n\t"
 "pushq %%r15\n\t"
 "pushfq\n\t"
 "movq %%rsp, %0\n\t"
 "movq %1, %%rsp\n\t"

"popfq\n\t"
"popq %%r15\n\t"
"popq %%r14\n\t"
"popq %%r13\n\t"
"popq %%r12\n\t"
"popq %%r11\n\t"
"popq %%r10\n\t"
"popq %%r9\n\t"
"popq %%r8\n\t"
"popq %%rbp\n\t"
"popq %%rdi\n\t"
"popq %%rsi\n\t"
"popq %%rdx\n\t"
"popq %%rcx\n\t"
"popq %%rbx\n\t"
: "=m" (*from_sp_p)
: "ra" (to_sp));

from_tcp->saved_sp ← r[sp]
r[sp] ← to_tcp->saved_sp

19

Implementing Thread Yield

‣Thread Yield
• gets next runnable thread from ready queue (if any)

• puts current thread on ready queue

• switches to next thread

‣Example Code

void uthread_yield () {
 uthread_t* to_thread = dequeue (&ready_queue);
 uthread_t* from_thread = uthread_cur_thread ();
 if (to_thread) {
 from_thread->state = TS_RUNABLE;
 enqueue (&ready_queue, from_thread);
 uthread_switch (to_thread);
 }
}

20

Multiple Processors

‣Processors are
• the physical / hardware resource that runs threads

• a system can have more than one

‣Uni-Processor System
• a single processor runs all threads

• no two threads run at the same time

‣Multi-Processor System
• multiple processors run the threads

• two threads can be running at the same time

‣More about this later, but we have a problem now ...
• how do we compute the value of cur_thread, the current thread’s TCB?

• we need this to yield the thread, for example, to place it on ready queue

• but, can’t use a global variable

21

Thread Private Data

‣Threads introduce need for another type of variable
• a thread-private variable is a global variable private to a thread

• like a local variable is private to a procedure activation

‣For example
• cur_thread, the address of the current thread’s activation frame

• It’s a global variable to thread, but every thread has its own copy

‣ Implementing Thread Private Data
• store Thread-private data in TCB

• store pointer to TCB at top of every stack

• compute current stack top from stack pointer
- require that stack top address is aligned to stack size

- stack top = r5 & ~(Stack Size - 1)

22

Thread Private Data

Ready Queue

r5

Stacks

TCBa
 RUNNING

TCBb
 RUNNABLE

TCBc
 RUNNABLE

Thread Control
Blocks

Top of stack points to TCB
where Thread-private data is
stored

23

Thread Scheduling

‣Thread Scheduling is
• the process of deciding when threads should run

• when there are more runnable threads than processors

• involves a policy and a mechanism

‣Thread Scheduling Policy
• is the set of rules that determines which threads should be running

‣Things you might consider when setting scheduling policy
• do some threads have higher priority than others?

• should threads get fair access to the processor?

• should threads be guaranteed to make progress?

• do some operations have deadlines?

• should one thread be able to pre-empt another?

• if threads can be pre-empted, are there times when this shouldn’t happen?

24

Priority, Round Robin Scheduling Policy

‣Priority
• is a number assigned to each thread

• thread with highest priority goes first

‣When choosing the next thread to run
• run the highest priority runnable thread

• when threads are same priority, run thread that has waited the longest

‣ Implementing Thread Mechanism
• organize Ready Queue as a priority queue

- highest priority first

- first-in-first out (FIFO) among equal-priority threads

‣Benefits

‣Drawbacks and mitigation

25

Preemption

‣Preemption occurs when
• a “yield” is forced upon the current running thread

• current thread is stopped to allow another thread to run

‣Priority-based preemption
• when a thread is made runnable (e.g., created or unblocked)

• if it is higher priority than current-running thread, it preempts that thread

‣Quantum-based preemption
• each thread is assigned a runtime “quantum”

• thread is preempted at the end of its quantum

‣How long should quantum be?
• disadvantage of too short?

• disadvantage of too long?

• typical value is around 100 ms

‣How is quantum-based preemption implemented?

26

Implementing Quantum Preemption

‣Timer Device
• an I/O controller connected to a clock

• interrupts processor at regular intervals

‣Timer Interrupt Handler
• compares the running time of current thread to its quantum

• preempts it if quantum has expired

‣How is running thread preempted

27

Real-Time Scheduling

‣Problem with round-robin, preemptive, priority scheduling
• some applications require threads to run at a certain time or certain interval

• but, what does round-robin guarantee and not guarantee?

‣Real-time Scheduling
• hard realtime – e.g., for controlling or monitoring devices

- thread is guaranteed a regular timeslot and is given a time budget

- thread can not exceed its time budget

- thread will not be “admitted” to the run in the first place, unless its schedule can be
guaranteed

• soft realtime – e.g., for media streaming
- option 1: over-provision and use round-robin

- option 2: thread expresses its scheduling needs, scheduler tries its best, but no guarantee

28

Summary

‣User-Level Threads
• notice that we haven’t talked about the OS yet (we will soon)

• everything we’ve talked about can be implemented in an application

• the difference between OS and application is processor privilege level
- OS is “kernel”-level

- Applications are “user”-level

• and so, what we are talking about are called User-Level Threads

‣Thread State
• when running: stack and machine registers (register file etc.)

• when stopped: Thread Control Block stores stack pointer, stack stores state

‣Round-Robin, Preemptive, Priority Thread Scheduling
• lower priority thread preempted by higher

• thread preempted when its quantum expires

• equal-priority threads get fair share of processor, in round-robin fashion

29

