
CPSC 213
Introduction to Computer Systems

Unit 1c

Instance Variables and Dynamic Allocation
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Reading For Next 3 Lectures

‣Companion
• 2.4.4-2.4.5

‣Textbook
• Structures, Dynamic Memory Allocation, Understanding Pointers

• 2nd edition: 3.9.1, 9.9, 3.10

• 1st edition:  3.9.1, 10.9, 3.11
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Instance Variables

‣Variables that are an instance of a class or struct
• created dynamically 

• many instances of the same variable can co-exist

‣Java vs C
• Java:	 objects are instances of non-static variables of a class

• C:	 	 structs are named variable groups, instance is also called a struct

‣Accessing an instance variable
• requires a reference to a particular object (pointer to a struct)

• then variable name chooses a variable in that object (struct)

Class X
  static int i;
  int j;

Object instance of X
  int j;

Object instance of X
  int j;

Object instance of X
  int j;

Object instance of X
  int j;

Object instance of X
  int j;

X anX

anX.jX.i
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Structs in C (S4-instance-var)

‣A struct is a
• collection of variables of arbitrary type, allocated and accessed together

‣Declaration
• similar to declaring a Java class without methods

• name is “struct” plus name provided by programer

• static 

• dynamic

‣Access
• static

• dynamic

struct D {
  int e;
  int f;
};

class D {
  public int e;
  public int f;
}≈

struct D  d0;

struct D* d1;

d0.e = d0.f;

d1->e = d1->f;
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Struct Allocation

‣Static structs are allocated by the compiler

‣Dynamic structs are allocated at runtime
• the variable that stores the struct pointer may be static or dynamic

• the struct itself is allocated when the program calls malloc

struct D  d0;

struct D {
  int e;
  int f;
};

Static Memory Layout

0x1000: value of d0.e
0x1004: value of d0.f

struct D* d1;

Static Memory Layout

0x1000: value of d1
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• runtime allocation of dynamic struct

• assume that this code allocates the struct at address 0x2000

void foo () {
  d1 = (struct D*) malloc (sizeof(struct D));
}

0x1000: 0x2000

0x2000: value of d1->e
0x2004: value of d1->f

struct D {
  int e;
  int f;
};
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Struct Access

‣Static and dynamic differ by an extra memory access
• dynamic structs have dynamic address that must be read from memory

• in both cases the offset to variable from base of struct is static

struct D {
  int e;
  int f;
};

d0.e = d0.f; d1->e = d1->f;

m[0x1000] ← m[0x1004] m[m[0x1000]+0] ← m[m[0x1000]+4]

r[0]    ← 0x1000

r[1]    ← m[r[0]+4]
m[r[0]] ← r[1]

r[0]    ← 0x1000
r[1]    ← m[r[0]]
r[2]    ← m[r[1]+4]
m[r[1]] ← r[2]

load d1
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struct D {
  int e;
  int f;
};

d0.e = d0.f; d1->e = d1->f;

r[0]    ← 0x1000

r[1]    ← m[r[0]+4]
m[r[0]] ← r[1]

r[0]    ← 0x1000
r[1]    ← m[r[0]]
r[2]    ← m[r[1]+4]
m[r[1]] ← r[2]

load d1

ld $0x1000, r0  # r0 = address of d0
ld 4(r0), r1    # r0 = d0.f
st r1, (r0)     # d0.e = d0.f

ld $0x1000, r0  # r0 = address of d1
ld (r0), r1     # r1 = d1
ld 4(r1), r2    # r2 = d1->f
st r2, (r1)     # d1->e = d1->f

‣The revised load/store base plus offset instructions
• dynamic base address in a register plus a static offset (displacement)

ld 4(r1), r2
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‣Machine format for base + offset
• note that the offset will in our case always be a multiple of 4

• also note that we only have a single instruction byte to store it

• and so, we will store offset / 4 in the instruction

‣The Revised ISA

The Revised Load-Store ISA

Name Semantics Assembly Machine
load immediate r[d] ← v ld $v, rd 0d-- vvvvvvvv
load base+offset r[d] ← m[r[s]+(o=p*4)] ld o(rs), rd 1psd
load indexed r[d] ← m[r[s]+4*r[i]] ld (rs,ri,4), rd 2sid
store base+offset m[r[d]+(o=p*4)] ← r[s] st rs, o(rd) 3spd
store indexed m[r[d]+4*r[i]] ← r[s] st rs, (rd,ri,4) 4sdi
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Dynamic Allocation
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Dynamic Allocation in C and Java

‣Programs can allocate memory dynamically
• allocation reserves a range of memory for a purpose

• in Java, instances of classes are allocated by the new statement

• in C, byte ranges are allocated by call to malloc procedure

‣Wise management of memory requires deallocation 
• memory is a scare resource

• deallocation frees previously allocated memory for later re-use

• Java and C take different approaches to deallocation

‣How is memory deallocated in Java?

‣Deallocation in C
• programs must explicitly deallocate memory by calling the free procedure

• free frees the memory immediately, with no check to see if its still in use
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Considering Explicit Delete

‣Lets look at this example

• is it safe to free mb where it is freed?

• what bad thing can happen?

struct MBuf * receive () {
  struct MBuf* mBuf = (struct MBuf*) malloc (sizeof (struct MBuf));
  ...
  return mBuf;
}

void foo () {
  struct MBuf* mb = receive ();
  bar (mb);
  free (mb);
}
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‣Lets extend the example to see
• what might happen in bar()

• and why a subsequent call to bat() would expose a serious bug

struct MBuf * receive () {
  struct MBuf* mBuf = (struct MBuf*) malloc (sizeof (struct MBuf));
  ...
  return mBuf;
}

void foo () {
  struct MBuf* mb = receive ();
  bar (mb);
  free (mb);
}

void MBuf* aMB;

void bar (MBuf* mb) {
  aMB = mb;
}

void bat () {
  aMB->x = 0;
}

This statement writes to
unallocated (or re-allocated) memory.
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‣A dangling pointer is 
• a pointer to an object that has been freed

• could point to unallocated memory or to another object

‣Why they are a problem
• program thinks its writing to object of type X, but isn’t

• it may be writing to an object of type Y, consider this sequence of events

Dangling Pointers

0x2000: a struct mbuf

aMB: 0x2000

(1) Before free:

0x2000: free memory

aMB: 0x2000

(2) After free:

0x2000: another thing

aMB: 0x2000

(3) After another malloc:

dangling 
pointer

dangling pointer that is 
really dangerous
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Avoiding Dangling Pointers in C

‣Understand the problem
• when allocation and free appear in different places in your code

• for example, when a procedure returns a pointer to something it allocates

‣Avoid the problem cases, if possible
• restrict dynamic allocation/free to single procedure, if possible

• don’t write procedures that return pointers, if possible

• use local variables instead, where possible
- we’ll see later that local variables are automatically allocated on call and freed on return

‣Engineer for memory management, if necessary
• define rules for which procedure is responsible for deallocation, if possible

• implement explicit reference counting if multiple potential deallocators

• define rules for which pointers can be stored in data structures

• use coding conventions and documentation to ensure rules are followed
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‣ If procedure returns value of dynamically allocated object
• allocate that object in caller and pass pointer to it to callee

• good if caller can allocate on stack or can do both malloc / free itself

struct MBuf * receive () {
  struct MBuf* mBuf = (struct MBuf*) malloc (sizeof (struct MBuf));
  ...
  return mBuf;
}

void foo () {
  struct MBuf* mb = receive ();
  bar (mb);
  free (mb);
}

Avoiding dynamic allocation

void receive (struct MBuf* mBuf) {
  ...
}

void foo () {
  struct MBuf mb;
  receive (&mb);
  bar (mb);
}
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Reference Counting

‣Use reference counting to track object use
• any procedure that stores a reference increments the count

• any procedure that discards a reference decrements the count

• the object is freed when count goes to zero

struct MBuf* malloc_Mbuf () {
  struct MBuf* mb = (struct MBuf* mb) malloc (sizeof (struct MBuf));
  mb->ref_count = 1;
  return mb;
}

void keep_reference (struct MBuf* mb) {
  mb->ref_count ++;
}

void free_reference (struct MBuf* mb) {
  mb->ref_count --;
  if (mb->ref_count==0)
    free (mb);
}
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‣The example code then uses reference counting like this

struct MBuf * receive () {
  struct MBuf* mBuf = malloc_Mbuf ();
  ...
  return mBuf;
}

void foo () {
  struct MBuf* mb = receive ();
  bar (mb);
  free_reference (mb);
}

void MBuf* aMB = 0;

void bar (MBuf* mb) {
  if (aMB != 0)
    free_reference (aMB);
  aMB = mb;
  keep_reference (aMB);
}
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Garbage Collection

‣ In Java objects are deallocated implicitly
• the program never says free

• the runtime system tracks every object reference

• when an object is unreachable then it can be deallocated

• a garbage collector runs periodically to deallocate unreachable objects

‣Advantage compared to explicit delete
• no dangling pointers

MBuf receive () {
  MBuf mBuf = new MBuf ();
  ...
  return mBuf;
}

void foo () {
  MBuf mb = receive ();
  bar (mb);
}
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‣What are the advantages of C’s explicit delete

‣What are the advantages of Java’s garbage collection

‣ Is it okay to ignore deallocation in Java programs?

Discussion
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‣Memory leak
• occurs when the garbage collector fails to reclaim unneeded objects

• memory is a scarce resource and wasting it can be a serous bug

• its huge problem for long-running programs where the garbage accumulates

‣How is it possible to create a memory leak in Java?
• Java can only reclaim an object if it is unreachable

• but, unreachability is only an approximation of whether an object is needed

• an unneeded object in a hash table, for example, is never reclaimed

‣ The solution requires engineering
• just as in C, you must plan for memory deallocation explicitly

• unlike C, however, if you make a mistake, you can not create a dangling pointer

• in Java you remove the references, Java reclaims the objects

‣ Further reading
• http://java.sun.com/docs/books/performance/1st_edition/html/JPAppGC.fm.html

Memory Management in Java
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Ways to Avoid Unintended Retention

‣ imperative approach with explicit reference annulling 
• explicitly set references to NULL when referent is longer needed

• add close() or free() methods to classes you create and call them explicitly

• use try-finally block to ensure that these clean-up steps are always taken

• these are imperative approaches; drawbacks?

‣declarative approach with reference objects
• refer to objects without requiring their retention

• store object references that the garbage collector can reclaim

• different levels of reference stickiness
- soft	 	 discarded only when new allocations put pressure on available memory

- weak	 	 discarded on next GC cycle when no stronger reference exists

- phantom	 unretrievable (get always returns NULL), used to register with GC reference queue

WeakReference<Widget> weakRef = new WeakReference<Widget>(widget);
Widget widget                 = weakRef.get() // may return NULL
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Using Reference Objects

‣Creating a reclaimable reference
• the Reference class is a template that be instantiated for any reference

• store instances of this class instead of the original reference

• allows the garbage collector to collect the MBuf even if aMB points to it

‣This does not reclaim the weak reference itself
• while the GC will reclaim the MBuf, it can’t reclaim the WeakReference

• the problem is that aMB stores a reference to WeakReference

• not a big issue here, there is only one

• but, what if we store a large collection of weak references?

void bar (MBuf mb) {
  aMB = new WeakReference<Mbuf>(mb);
}
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Using Reference Queues

‣ The problem
• reference objects will be stored in data structures

• reclaiming them requires first removing them from these data structures

‣ The reference queue approach
• a reference object can have an associated reference queue

• the GC adds reference objects to the queue when it collects their referent

• your code scans the queue periodically to update referring data structures

ReferenceQueue<MBuf> refQ = new ReferenceQueue<MBuf> ();

void bar (MBuf mb) {
  aMB = new WeakReference<Mbuf> (mb,refQ);
}

void removeGarbage () {
  while ((WeakReference<Mbuf> ref = refQ.poll()) != null)
    // remove ref from data structure where it is stored 
    if (aMB==ref) 
      aMB = null; 
}
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