
CPSC 213
Introduction to Computer Systems

Unit 1a

Numbers and Memory

1

The Big Picture

‣Build machine model of execution
• for Java and C programs

• by examining language features

• and deciding how they are implemented by the machine

‣What is required
• design an ISA into which programs can be compiled

• implement the ISA in the hardware simulator

‣Our approach
• examine code snippets that exemplify each language feature in turn

• look at Java and C, pausing to dig deeper when C is different from Java

• design and implement ISA as needed

‣ The simulator is an important tool
• machine execution is hard to visualize without it

• this visualization is really our WHOLE POINT here

2

Reading For Next 2 Lectures

‣Companion
• 1-2.3

‣Textbook
• A Historical Perspective - Accessing Information, Data Alignment

• 2nd edition: 3.1-3.4, 3.9.3

• 1st edition: 3.1-3.4, 3.10

3

Numbers in Memory

4

Initial thoughts

‣Hexadecimal notation
• “0x” followed by number (e.g., 0x2a3 = 2x162 + 10x161 + 3x160)

• a convenient way to describe numbers when binary format is important

• each hex digit (hexit) is stored by 4 bits: (0|1)x8 + (0|1)x4 + (0|1)x2 + (0|1)x1

• some examples ...

‣ Integers of different sizes
• byte is 8 bits, 2 hexits

• short is 2 bytes, 16 bits, 4 hexits

• int / word is 4 bytes, 32 bits, 8 hexits

• long long is 8 bytes, 64 bits, 16 hexits

‣Memory is byte addressed
• every byte of memory has a unique address, number from 0 to N

• reading or writing an integer requires specifying a range of byte addresses

5

Making Integers from Bytes

‣Our first architectural decisions
• assembling memory bytes into integer registers

‣Consider 4-byte memory word and 32-bit register
• it has memory addresses i, i+1, i+2, and i+3

• we’ll just say its “at address i and is 4 bytes long”

• e.g., the word at address 4 is in bytes 4, 5, 6 and 7.

‣Big or Little Endian
• we could start with the BIG END of the number (everyone but Intel)

• or we could start with the LITTLE END (Intel)

i

231 to 224

i + 1

223 to 216

i + 2

215 to 28

i + 3

27 to 20

i + 3

231 to 224

i + 2

223 to 216

i + 1

215 to 28

i

27 to 20

i

i + 1

i + 2

i + 3

...

...

✔

Memory

Register bits

Register bits

6

‣Aligned or Unaligned Addresses
• we could allow any number to address a multi-byte integer

• or we could require that addresses be aligned to integer-size boundary

• Power-of-Two Aligned Addresses Simplify Hardware
- smaller things always fit complete inside of bigger things

- byte address to integer address is division by power to two, which is just shifting bits

j / 2k == j >> k (j shifted k bits to right)

word contains exactly two
complete shorts

address modulo chuck-size is always zero

✔

✗
* disallowed on most
 architectures
* allowed on Intel,
 but slower

7

Interlude
A Quick C Primer

8

‣ source files
• .c	 is source file

• .h	 is header file

‣ including headers in source
• #include <stdio.h>

‣ pointer types
• int* b; // b is a POINTER to an INT

‣ getting address of object
• int a; // a is an INT
• int* b = &a; // b is a pointer to a

‣ de-referencing pointer
• a = 10; // assign the value 10 to a
• *b = 10; // assign the value 10 to a

‣ type casting is not typesafe	
• char a[4]; // a 4 byte array
• *((int*) &a[0]) = 1; // treat those four bytes as an INT

A few initial things about C

9

‣compile and run
• at UNIX (e.g., Linux, MacOS, or Cygwin) shell prompt

• gcc -o foo foo.c

• ./foo

10

Back to Numbers ...

11

Determining Endianness of a Computer

#include <stdio.h>

int main () {
 char a[4];

 ((int)a) = 1;

 printf("a[0]=%d a[1]=%d a[2]=%d a[3]=%d\n",a[0],a[1],a[2],a[3]);
}

12

Questions

‣Which of the following statement (s) are true
• [R]	 6 == 1102 is aligned for addressing a short int

• [Y]	 6 == 1102 is aligned for addressing a long int (i.e., 4-byte int)

• [G]	20 == 101002 is aligned for addressing a long int

• [B]	 20 == 101002 is aligned for addressing a long long (i.e., 8-byte int)

13

‣Which of the following statements are true
• [R]	 memory stores Big Endian integers

• [Y]	 memory stores bytes interpreted by the CPU as Big Endian integers

• [G]	Neither

• [B]
 I don’t know

14

‣Which of these are true
• [R]	 The Java constants 16 and 0x10 are exactly the same integer

• [Y]	 16 and 0x10 are different integers

• [G]	Neither

• [B]
 I don’t know

15

‣What is the Big-Endian integer value at address 4 below?
• [R] 		 0x1c04b673
• [Y] 		 0xc1406b37
• [G] 	 0x73b6041c
• [B] 		 0x376b40c1
• [R+Y]	 none of these

• [G+B]
 I don’t know

0x0: 0xfe

0x1: 0x32

0x2: 0x87

0x3: 0x9a

0x4: 0x73

0x5: 0xb6

0x6: 0x04

0x7: 0x1c

Memory

16

‣What is the value of i after this Java statement executes?

 int i = (byte)(0x8b) << 16;

• [R]	 	 0x8b
• [Y]	 	 0x0000008b
• [G]	 	 0x008b0000
• [B]	 	 0xff8b0000
• [R+Y]	 None of these

• [G+B]
 I don’t know

17

‣What is the value of i after this Java statement executes?

	 i = 0xff8b0000 & 0x00ff0000;
• [R]	 0xffff0000
• [Y]	 0xff8b0000
• [G]	0x008b0000
• [B]
 I don’t know

18

In the Lab ...

‣write a C program to determine Endianness
• prints “Little Endian” or “Big Endian”

• get comfortable with Unix command line and tools (important)

‣compile and run this program on two architectures
• IA32: lin01.ugrad.cs.ubc.ca

• Sparc: any of the other undergrad machines

• you can tell what type of arch you are on
- % uname -a

‣SimpleMachine simulator
• load code into Eclipse and get it to build

• write and test MainMemory.java

• additional material available on the web page at lab time

19

The Main Memory Class

‣The SM213 simulator has two main classes
• CPU implements the fetch-execute cycle

• MainMemory implements memory

‣The first step in building our processor
• implement 6 main internal methods of MainMemory

CPU
 fetch
 execute

MainMemory
 isAligned
 length
 bytesToInteger
 integerToBytes
 get
 set

read
readInteger

write
writeInteger

20

The Code You Will Implement

/**
 * Determine whether an address is aligned to specified length.
 * @param address memory address
 * @param length byte length
 * @return true iff address is aligned to length
 */
protected boolean isAccessAligned (int address, int length) {
 return false;
}

/**
 * Determine the size of memory.
 * @return the number of bytes allocated to this memory.
 */
public int length () {
 return 0;
}

21

/**
 * Convert an sequence of four bytes into a Big Endian integer.
 * @param byteAtAddrPlus0 value of byte with lowest memory address
 * @param byteAtAddrPlus1 value of byte at base address plus 1
 * @param byteAtAddrPlus2 value of byte at base address plus 2
 * @param byteAtAddrPlus3 value of byte at base address plus 3
 * @return Big Endian integer formed by these four bytes
 */
public int bytesToInteger (UnsignedByte byteAtAddrPlus0,
 UnsignedByte byteAtAddrPlus1,
 UnsignedByte byteAtAddrPlus2,
 UnsignedByte byteAtAddrPlus3) {
 return 0;
}

/**
 * Convert a Big Endian integer into an array of 4 bytes
 * @param i an Big Endian integer
 * @return an array of UnsignedByte
 */
public UnsignedByte[] integerToBytes (int i) {
 return null;
}

22

/**
 * Fetch a sequence of bytes from memory.
 * @param address address of the first byte to fetch
 * @param length number of bytes to fetch
 * @return an array of UnsignedByte
 */
protected UnsignedByte[] get (int address, int length) throws ... {
 return null;
}

/**
 * Store a sequence of bytes into memory.
 * @param address address of the first memory byte
 * @param value an array of UnsignedByte values
 * @throws InvalidAddressException if any address is invalid
 */
protected void set (int address, UnsignedByte[] value) throws ... {
 ;
}

23

