
1

University of British Columbia
CPSC 111, Intro to Computation

2009W2: Jan-Apr 2010
Tamara Munzner

Class Design

Lecture 9, Mon Jan 24 2010

http://www.cs.ubc.ca/~tmm/courses/111-10

borrowing from slides by Paul Carter and
 Wolfgang Heidrich

2

News
■ If you have a midterm conflict with first midterm, let

me know by end of day today at the latest
■ Mon 2/8 6:30-8pm

3

Reading Assignments
■ Chapter 3

4

Recap: References vs Values
■ You copy a CD for your friend. Her dog chews it up.

Does that affect your CD?
■ no: different values
■ like primitive types

■ You and your friend start eating a slice of cake on
one shared plate. You get up to make a cup of tea.
Her dog jumps on the table and eats the cake. Does
that affect your half of the dessert?
■ yes: both forks reference the same plate
■ like objects

5

Recap: Abstraction
■ Abstraction: process whereby we

■ hide non-essential details
■ provide a view that is relevant

■ Often want different layers of abstraction depending
on what is relevant

6

Recap: Encapsulation
■ Encapsulation: process whereby

■ inner workings made inaccessible to protect them
and maintain their integrity

■ operations can be performed by user only through
well-defined interface.

■ aka information hiding
■ Cell phone example

■ inner workings encapsulated in hand set
■ cell phone users can’t get at them

■ intuitive interface makes using them easy
■ without understanding how they actually work

7

Recap: Designing Die Class

■ Blueprint for constructing objects of type Die
■ Think of manufacturing airplanes or dresses or

whatever
■ design one blueprint or pattern
■ manufacture many instances from it

■ Consider two viewpoints
■ client programmer: wants to use Die object in a

program
■ designer: creator of Die class

8

Recap: Designer
■ Decide on inner workings

■ implementation of class
■ Objects need state

■ attributes that distinguish one instance from another
■ many names for these

■ state variables
■ fields
■ attributes
■ data members

■ what fields should we create for Die?

9

Implementing Die
/**

Provides a simple model of a die

(as in pair of dice).

*/

public class Die

{

}

10

Random Numbers
■ Random class in java.util package

■ public Random()

■ Constructor
■ public float nextFloat()

■ Returns random number between 0.0 (inclusive) and 1.0
(exclusive)

■ public int nextInt()

■ Returns random integer ranging over all possible int values
■ public int nextInt(int num)

■ Returns random integer in range 0 to (num-1)

11

Implementing Die
/**

Provides a simple model of a die

(as in pair of dice).

*/

public class Die

{

}

12

return Statement

■ Use the return statement to specify the return
value when implementing a method:
int addTwoInts (int a, int b) {

return a+b;
}

■ Syntax: return expression;
■ The method stops executing at that point and

“returns” to caller.

13

Implementing Die
/**

Provides a simple model of a die

(as in pair of dice).

*/

public class Die

{

}

14

Information Hiding

■ Hide fields from client programmer
■ maintain their integrity
■ allow us flexibility to change them without affecting

code written by client programmer
■ Parnas' Law:

■ "Only what is hidden can by changed without risk."

15

Public vs Private
■ public keyword indicates that something can be

referenced from outside object
■ can be seen/used by client programmer

■ private keyword indicates that something cannot
be referenced from outside object
■ cannot be seen/used by client programmer

■ Let’s fill in public/private for Die class

16

Public vs. Private Example
public class Die {
...
public int roll()
...
private void cheat(int nextRoll)

...
}

17

Public vs. Private Example
Die myDie = new Die();

int result = myDie.roll(); // OK
myDie.cheat(6); //not allowed!

18

Implementing Die
/**

Provides a simple model of a die

(as in pair of dice).

*/

public class Die

{

}

19

Trying It Out!
■ Die class has no main method.
■ Best is to write another class that instantiates some

objects of your new class and tries them out.
■ Sometimes called a “tester” or “testbench”

20

Implementing RollDice
public class RollDice
{
 public static void main (String [] args)
 {

}

