
1

University of British Columbia
CPSC 111, Intro to Computation

2009W2: Jan-Apr 2010
Tamara Munzner

Objects, Class Design

Lecture 8, Fri Jan 22 2010

http://www.cs.ubc.ca/~tmm/courses/111-10

borrowing from slides by Paul Carter and
 Wolfgang Heidrich

2

News
■ If you have a midterm conflict with first midterm, let

me know by end of day on Monday at the latest
■ Mon 2/8 6:30-8pm

3

Recap: Primitive Types vs. Classes

Objects belong to classes
E.g., you are a UBC
Student

Values belong to types.
E.g., 3 is an int, 3.14159
is a double

ConstructorsLiterals

MethodsOperators: +, -, …
Can be arbitrarily complexSimplest things, e.g., int

Written by other
programmers or by you

Pre-defined in Java
ClassesPrimitive Types

4

Recap: String - Literal or Constructor
public class StringTest
{
 public static void main (String[] args)
 {

 String firstname;
 String lastname;
 firstname= “Kermit”;
 lastname = new String (“the Frog");

 System.out.println("I am not " + firstname
 + " " + lastname);
 }
}

String is the only class that supports both literals and constructors!

5

Recap: Importing Packages
■ Collections of related classes grouped into

packages
■ tell Java which packages to keep track of with import

statement
■ again, check API to find which package contains

desired class
■ No need to import String, System.out because

core java.lang packages automatically imported

6

import java.util.Scanner;

public class Echo
{
 public static void main (String[] args)
 {
 String message;
 Scanner scan = new Scanner (System.in);
 System.out.println ("Enter a line of text: ");
 message = scan.nextLine();
 System.out.println ("You entered: \""
 + message + "\"");
 }
}

Recap: Scanner Class Example

■ Print out the message on the display

7

Scanner Class Example
■ Let’s try running it

8

Scanner Class Methods
■ The Scanner class has other methods to read other

kinds of input, e.g.,
■ nextInt()
■ nextDouble()

■ See section 4.7 in your book for more.

9

More on Object References
■ Important distinction

■ For primitive types, variables hold the value.
■ For classes, variables hold reference to object

10

42

6.02E23

answer

avogadrosNumber

Primitive Types: Variables Hold Values
■ Java primitive types are small and simple.
■ Java variables hold values for primitive types.

11

Classes: Variables Hold References
■ Classes can be arbitrarily big and complex
■ Java variables hold object references for classes.

myRect

mySalary

Rectangle
x=5
y=10

height=20
width=30

BigInteger
1000000000000

12

Why Care About References vs Values?
■ You copy a CD for your friend. Her dog chews it up.

Does that affect your CD?
■ You and your friend start eating a slice of cake on

one shared plate. You get up to make a cup of tea.
Her dog jumps on the table and eats the cake. Does
that affect your half of the dessert?

13

Why Care About References vs Values?
■ Example using primitive types:

int a;
int b;

a= 3;
b= a;
b= b+1;
System.out.println("a= " + a + " and b=
" +b);

14

Why Care About References vs Values?
■ Example using objects:
 Rectangle a;
Rectangle b;

 a = new Rectangle(3, 4);
 b = a;
 b.setSize(5,6);
 System.out.println("a= " + a.getHeight()+

 ","+a.getWidth()+
 " and b= " +b.getHeight()+

 ","+b.getWidth());

15

Creating Classes
■ So far you’ve seen how to use classes created by

others
■ Now let’s think about how to create our own
■ Example: rolling dice

■ doesn’t exist already in Java API
■ we need to design
■ we need to implement

■ Start with two design principles

16

Abstraction
■ Abstraction: process whereby we

■ hide non-essential details
■ provide a view that is relevant

■ Often want different layers of abstraction depending
on what is relevant

17

Encapsulation
■ Encapsulation: process whereby

■ inner workings made inaccessible to protect them
and maintain their integrity

■ operations can be performed by user only through
well-defined interface.

■ aka information hiding
■ Cell phone example

■ inner workings encapsulated in hand set
■ cell phone users can’t get at them

■ intuitive interface makes using them easy
■ without understanding how they actually work

18

Information Hiding
■ Hide internal details from user of object.

■ maintains integrity of object
■ allow us flexibility to change them without affecting

users
■ Parnas' Law:

■ "Only what is hidden can by changed without risk."

19

Designing Die Class

■ Blueprint for constructing objects of type Die
■ Think of manufacturing airplanes or dresses or

whatever
■ design one blueprint or pattern
■ manufacture many instances from it

■ Consider two viewpoints
■ client programmer: wants to use Die object in a

program
■ designer: creator of Die class

20

Client Programmer

■ What operations does client programmer need?
■ what methods should we create for Die?

21

Designing Die
public class Die
{

}

22

Designing Die -- Better
/**

Provides a simple model of a die

(as in pair of dice).

*/

public class Die

{

}

23

Designer
■ Decide on inner workings

■ implementation of class
■ Objects need state

■ attributes that distinguish one instance from another
■ many names for these

■ state variables
■ fields
■ attributes
■ data members

■ what fields should we create for Die?

24

Implementing Die
/**

Provides a simple model of a die

(as in pair of dice).

*/

public class Die

{

}

25

Random Numbers
■ Random class in java.util package

■ public Random()

■ Constructor
■ public float nextFloat()

■ Returns random number between 0.0 (inclusive) and 1.0
(exclusive)

■ public int nextInt()

■ Returns random integer ranging over all possible int values
■ public int nextInt(int num)

■ Returns random integer in range 0 to (num-1)

26

Implementing Die
/**

Provides a simple model of a die

(as in pair of dice).

*/

public class Die

{

}

27

return Statement

■ Use the return statement to specify the return
value when implementing a method:
int addTwoInts (int a, int b) {

return a+b;
}

■ Syntax: return expression;
■ The method stops executing at that point and

“returns” to caller.

28

Implementing Die
/**

Provides a simple model of a die

(as in pair of dice).

*/

public class Die

{

}

29

Information Hiding

■ Hide fields from client programmer
■ maintain their integrity
■ allow us flexibility to change them without affecting

code written by client programmer
■ Parnas' Law:

■ "Only what is hidden can by changed without risk."

30

Public vs Private
■ public keyword indicates that something can be

referenced from outside object
■ can be seen/used by client programmer

■ private keyword indicates that something cannot
be referenced from outside object
■ cannot be seen/used by client programmer

■ Let’s fill in public/private for Die class

31

Public vs. Private Example
public class Die {
...
public int roll()
...
private void cheat(int nextRoll)

...
}

32

Public vs. Private Example
Die myDie = new Die();

int result = myDie.roll(); // OK
myDie.cheat(6); //not allowed!

33

Implementing Die
/**

Provides a simple model of a die

(as in pair of dice).

*/

public class Die

{

}

34

Trying It Out!
■ Die class has no main method.
■ Best is to write another class that instantiates some

objects of your new class and tries them out.
■ Sometimes called a “tester” or “testbench”

35

Implementing RollDice
public class RollDice
{
 public static void main (String [] args)
 {

}

