
1

University of British Columbia
CPSC 111, Intro to Computation

2009W2: Jan-Apr 2010
Tamara Munzner

Objects, Input

Lecture 7, Wed Jan 20 2010

http://www.cs.ubc.ca/~tmm/courses/111-10

borrowing from slides by Kurt Eiselt

2

News
■ Midterm location announced: FSC 1005

■ for both Feb 28 and Mar 22 midterms
■ Assignment 1 out

■ due Wed 3 Feb at 5pm, by electronic handin

3

Recap: Classes, Methods, Objects
■ Class: complex data type

■ includes both data and operations
■ programmers can define new classes
■ many predefined classes in libraries

■ Method: operations defined within class
■ internal details hidden, you only know result

■ Object: instance of class
■ entity you can manipulate in your program

4

Recap: Declare vs. Construct Object

■ Variable declaration does not create object
■ creates object reference

■ Constructor and new operator creates object somewhere in
memory
■ constructors can pass initial data to object

■ Assignment binds object reference to created object
■ assigns address of object location to variable

public static void main (String[] args) {
 String firstname;

 firstname = new String (“Kermit");
}

5

Recap: Declare vs. Construct Object

firstname String object

“Kermit”

expression on right side
of assignment operator

bind variable to
expression on right side
of assignment operator

6

Recap: Objects vs. Primitives
■ references

int
favoriteNum

Frog object

Frog
favoriteFrog

42

int
famousNum

42

Frog
famousFrog

■ vs. direct storage

boolean isMuppet

true

String frogName

String object

“Kermit”

7

Recap: Objects vs. Primitives
■ references

int
favoriteNum

Frog object

Frog
favoriteFrog

999

int
famousNum

42

Frog
famousFrog

boolean isMuppet

false

String frogName

String object

“Kermit”

■ vs. direct storage

8

Recap: API Documentation
■ Online Java library documentation at

http://java.sun.com/javase/6/docs/api/
■ textbook alone is only part of the story
■ let’s take a look!

■ Everything we need to know: critical details
■ and often many things far beyond current need

■ Classes in libraries are often referred to as
Application Programming Interfaces
■ or just API

9

Recap: Some Available String Methods
public String toUpperCase();
Returns a new String object identical to this object but with
all the characters converted to upper case.

public int length();
Returns the number of characters in this String object.

public boolean equals(String otherString);
Returns true if this String object is the same as
otherString and false otherwise.

public char charAt(int index);
Returns the character at the given index. Note that the
first character in the string is at index 0.

10

Recap: More String Methods
public String replace(char oldChar, char newChar);
Returns a new String object where all instances of oldChar have been

changed into newChar.

public String substring(int beginIndex);
Returns new String object starting from beginIndex position

public String substring(int beginIndex, int endIndex);
Returns new String object starting from beginIndex position and ending

at endIndex position

H e l l o K e r m i t F r o g

0 1 2 3 4 5 6 7 8 9 1110 12 13 14 15

substring(4, 7) “o K”

up to but not including endIndex char:

11

 String firstname = "Alphonse";
 char thirdchar = firstname.charAt(2);

 object method parameter

Recap: Methods and Parameters
■ Methods are how objects are manipulated

■ pass information to methods with parameters
■ inputs to method call
■ tell charAt method which character in the String object we're

interested in

■ methods can have multiple parameters
■ API specifies how many, and what type

■ two types of parameters
■ explicit parameters given between parens
■ implicit parameter is object itself

12

Recap: Return Values
■ Methods can have return values
■ Example: charAt method result

■ return value, the character 'n', is stored in
thirdchar

 String firstname = "kangaroo";
 char thirdchar = firstname.charAt(2);

■ Not all methods have return values
■ No return value indicated as void

return value object method parameter

13

Recap: Constructors and Parameters

■ Many classes have more than one
constructor, taking different parameters
■ use API docs to pick which one to use based

on what initial data you have

animal = new String();
animal = new String("kangaroo");

14

Classes, Continued
■ A class has a name.
■ A class should describe something intuitively

meaningful. Why did someone create this class?
■ A class describes the data stored inside objects in

the class. (Nouns)
■ A class describes the legal operations that can be

done to the data. (Verbs)
■ Example in Book: java.awt.Rectangle

15

Primitive Types vs. Classes

Objects belong to classes
E.g., you are a UBC
Student

Values belong to types.
E.g., 3 is an int, 3.14159
is a double

MethodsOperators: +, -, …
Can be arbitrarily complexSimplest things, e.g., int

Written by other
programmers or by you

Pre-defined in Java
ClassesPrimitive Types

16

Objects Belong to Classes
■ Just as 1, 2, and 3 are all integers,

you are all objects of the class UBCStudent!
■ You each have names, ID numbers, etc.
■ Each is unique person, but all are students

■ Social organizations example:
■ Ballroom Dance Club
■ Ski Club
■ CSSS
■ Etc.

■ Sometimes called “instances” of a class.

17

Class Libraries
■ Before making new class yourself, check to see if someone

else did it already
■ libraries written by other programmers
■ many built into Java

■ Examples (built into Java)
■ BigInteger (java.math.BigInteger) lets you compute with

arbitrarily big integers.
■ Date (java.util.Date) lets you get the current time.
■ Calendar (java.util.Calendar) does fancy date

computations.

18

Example: BigInteger
import java.math.BigInteger;
// Tell Java to use standard BigInteger package

public class GetRichQuick {
 public static void main(String[] args) {
 BigInteger salary = new BigInteger("111222333444555666777888999");
 BigInteger stockOptions = new
 BigInteger("100000000000000000000000000000000");
 BigInteger profitPerShare = new BigInteger("314159");

 BigInteger optionCompensation =
stockOptions.multiply(profitPerShare);

 BigInteger totalCompensation = salary.add(optionCompensation);

 System.out.println("Total Compensation = $" +
 totalCompensation.toString());
 }
}

19

BigInteger Constructors
import java.math.BigInteger;
// Tell Java to use standard BigInteger package

public class GetRichQuick {
 public static void main(String[] args) {
 BigInteger salary = new BigInteger("111222333444555666777888999");
 BigInteger stockOptions = new
 BigInteger("100000000000000000000000000000000");
 BigInteger profitPerShare = new BigInteger("314159");

 BigInteger optionCompensation =
stockOptions.multiply(profitPerShare);

 BigInteger totalCompensation = salary.add(optionCompensation);

 System.out.println("Total Compensation = $" +
 totalCompensation.toString());
 }
}

20

Literals
■ With the primitive types, how do you create values

with that type?
E.g., how do we create integer values?

1. You type some digits, like 3, or 42
2. You combine integer-valued things with

operators that work on integers, e.g.,
3+42*(a-b)

21

Literals
■ With the primitive types, how do you create values

with that type?
E.g., how do we create integer values?

1. You type some digits, like 3, or 42
2. You combine integer-valued things with

operators that work on integers, e.g.,
3+42*(a-b)

■ A bunch of digits are an integer literal.
■ It’s the basic way to create an integer value

22

More Literals
■ How about a value of type double?

1. You type a bunch of digits with a
decimal point, and optionally the
letter e or E followed by an exponent

2. You can combine doubles with
 operators that work on doubles.

23

More Literals

■ How about a value of type double?
1. You type a bunch of digits with a

decimal point, and optionally the
letter e or E followed by an exponent

2. You can combine doubles with
 operators that work on doubles.

Those are literals!

24

Long Literals

■ How about values of type long?
1. You type a bunch of digits followed

by the letter l or L
2. You combine previously created longs

25

Literals – General Pattern
■ To create values of a primitive type:

1. There’s some way to type a literal
2. There are operators that create values

of the given type.

26

Literals for Classes?
■ Classes are like primitive types, except they can be

defined any way you like, and they can be much
more complex.

■ How to create a value (an object) of a given class?
1. Invent some way to type a literal???
2. Operators that create objects of that

class (methods).

27

Constructors!
■ A constructor is the equivalent of a literal for a

class. It’s how you create a new object that belongs
to that class.

■ Examples:
new BigInteger(“999999”)
new Rectangle(10, 20, 30, 40)
new UBCStudent(“Joe Smith”,12345678,…)

28

Constructor Syntax
■ The reserved word new
■ Followed by the name of the class
■ Followed by an open parenthesis (
■ Followed by an parameters (information needed to

construct the object)
■ Followed by a closing parenthesis)

29

Using Constructors
■ Use a constructor just as you’d use a literal.
Example:
■ For the int type:

int a = 3;
■ For the BigInteger class:

BigInteger a = new BigInteger(“3”);

30

Primitive Types vs. Classes

Objects belong to classes
E.g., you are a UBC
Student

Values belong to types.
E.g., 3 is an int, 3.14159
is a double

ConstructorsLiterals

MethodsOperators: +, -, …
Can be arbitrarily complexSimplest things, e.g., int

Written by other
programmers or by you

Pre-defined in Java
ClassesPrimitive Types

31

What about String?
■ Is String a primitive type? Is it a class?
■ String is a class, but it’s a special class!

■ Automatically imported
■ Built-in literals, e.g., “This is a String literal.”
■ + operator for concatenation

■ But it also has many other methods, that you can
call, just like for any ordinary class…

32

String Example – Constructor Syntax
public class StringTest
{
 public static void main (String[] args)
 {
 String firstname;
 String lastname;
 firstname = new String (“Kermit");
 lastname = new String (“the Frog");
 System.out.println("I am not " + firstname
 + " " + lastname);
 }
}

33

String Example - Literal Syntax
public class StringTest
{
 public static void main (String[] args)
 {

 String firstname;
 String lastname;
 firstname= “Kermit”;
 lastname= “the Frog”;

 System.out.println("I am not " + firstname
 + " " + lastname);
 }
}

String is the only class that supports both literals and constructors!

34

Escape Characters
■ How can you make a String that has quotes?

■ String foo = “oh so cool”;
■ String bar = “oh so \”cool\”, more so”;

■ Escape character: backslash
■ general principle

35

Keyboard Input
■ Want to type on keyboard and have Java program read in

what we type
■ store it in variable to use later

■ Want class to do this
■ build our own?
■ find existing standard Java class library?
■ find existing library distributed by somebody else?

■ Scanner class does the trick
■ java.util.Scanner

■ nicer than System.in, the analog of System.out

36

import java.util.Scanner;

public class Echo
{
 public static void main (String[] args)
 {
 String message;
 Scanner scan = new Scanner (System.in);
 System.out.println ("Enter a line of text: ");
 message = scan.nextLine();
 System.out.println ("You entered: \""
 + message + "\"");
 }
}

Scanner Class Example

37

import java.util.Scanner;

public class Echo
{
 public static void main (String[] args)
 {
 String message;
 Scanner scan = new Scanner (System.in);
 System.out.println ("Enter a line of text: ");
 message = scan.nextLine();
 System.out.println ("You entered: \""
 + message + "\"");
 }
}

Scanner Class Example

■ Import Scanner class from java.util package

38

Importing Packages
■ Collections of related classes grouped into

packages
■ tell Java which packages to keep track of with import

statement
■ again, check API to find which package contains

desired class
■ No need to import String, System.out because core
java.lang packages automatically imported

39

import java.util.Scanner;

public class Echo
{
 public static void main (String[] args)
 {
 String message;
 Scanner scan = new Scanner (System.in);
 System.out.println ("Enter a line of text: ");
 message = scan.nextLine();
 System.out.println ("You entered: \""
 + message + "\"");
 }
}

Scanner Class Example

■ Declare string variable to store what user types in

40

import java.util.Scanner;

public class Echo
{
 public static void main (String[] args)
 {
 String message;
 Scanner scan = new Scanner (System.in);
 System.out.println ("Enter a line of text: ");
 message = scan.nextLine();
 System.out.println ("You entered: \""
 + message + "\"");
 }
}

Scanner Class Example

■ Use Scanner constructor method to create new Scanner
object named scan
■ could be named anything, like keyboardStuff or foo

41

import java.util.Scanner;

public class Echo
{
 public static void main (String[] args)
 {
 String message;
 Scanner scan = new Scanner (System.in);
 System.out.println ("Enter a line of text: ");
 message = scan.nextLine();
 System.out.println ("You entered: \""
 + message + "\"");
 }
}

Scanner Class Example

■ Prompt user for input

42

import java.util.Scanner;

public class Echo
{
 public static void main (String[] args)
 {
 String message;
 Scanner scan = new Scanner (System.in);
 System.out.println ("Enter a line of text: ");
 message = scan.nextLine();
 System.out.println ("You entered: \""
 + message + "\"");
 }
}

Scanner Class Example

■ nextLine method reads all input until end of line
■ returns it as one long string of characters

43

import java.util.Scanner;

public class Echo
{
 public static void main (String[] args)
 {
 String message;
 Scanner scan = new Scanner (System.in);
 System.out.println ("Enter a line of text: ");
 message = scan.nextLine();
 System.out.println ("You entered: \""
 + message + "\"");
 }
}

Scanner Class Example

■ Print out the message on the display

44

Scanner Class Example
■ Let’s try running it

