
1

University of British Columbia
CPSC 111, Intro to Computation

2009W2: Jan-Apr 2010
Tamara Munzner

Data Types, Assignment, Casting, Constants

Lecture 5, Fri Jan 15 2010

http://www.cs.ubc.ca/~tmm/courses/111-10

borrowing from slides by Kurt Eiselt

2

Reading This Week
■ Chap 1: 1.3-1.8
■ Chap 2: 2.1-2.2, 2.5
■ Chap 4: 4.1-4.2

■ reminder: weekly reading questions due now!

3

Recap: White Space
■ White space

■ Blanks between identifiers and other symbols
■ Tabs and newline characters are included

■ White space does not affect how program runs

■ Use white space to format programs we create so they’re
easier for people to understand

4

Recap: Errors

■ Compile-time errors
■ syntax/structure

■ Run-time errors
■ Logical errors

■ semantics/meaning

compile-time error

editing translating executing
insight source object results

 code code

run-time error

logical error

5

Recap: Variables
■ Variable: name for location in memory where data is

stored
■ avoid having to remember numeric addresses
■ like variables in algebra class

■ Variable names begin with lower case letters
■ Java convention, not compiler/syntax requirement

6

Recap: Data Types
■ Java requires that we tell it what kind of data it is working with
■ For every variable, we have to declare a data type
■ Java language provides eight primitive data types

■ i.e. simple, fundamental
■ For more complicated things, can use data types

■ created by others provided to us through the Java libraries
■ that we invent

■ More soon - for now, let’s stay with the primitives

■ We want a, b, and c to be integers
■ Here’s how we do it...

7

Recap: Variables and Data Types

//***
// Test3.java Author: Kurt
//
// Our third use of variables!
//***

public class Test3
{
 public static void main (String[] args)
 {
 int a; //these
 int b; //are
 int c; //variable declarations
 b = 3;
 c = 5;
 a = b + c;
 System.out.println ("The answer is " + a);
 }
} 8

Recap: Floating Point Numbers
■ significant digits

■ 42 = 4.2 * 10 = 4.2 * 101

■ 4.2 = 4.2 * 1 = 4.2 * 100

■ 42000000 = 4.2 * 10000000 = 4.2 * 107

■ .000042 = 4.2 * .00001 = 4.2 * 10-5

■ only need to remember
■ nonzero digits
■ where to put the decimal point

■ floats around when multiply/divide by 10

9

Data Type Sizes

■ fixed size, so finite capacity

approx 1.7E308
 (15 sig. digits)

approx -1.7E308
(15 sig. digits)

8 bytesdouble

2,147,483,647-2,147,483,6484 bytesint

MaxMinSizeType

5802
5803
5804
5805
5806
5807

1011010110110101
10000101

11110001
00010100

Address Data

one integer

10

Variable Declaration Examples
■ person’s age in years

■ height of mountain to nearest meter

■ length of bacterium in centimeters

■ number of pets at home

11

Variable Declaration and Assignment
■ variable declaration is instruction to compiler

■ reserve block of main memory large enough to store
data type specified in declaration

■ variable name is specified by identifier
■ syntax:

■ typeName variableName;

12

Assignment

//***
// Test3.java Author: Kurt
//
// Our third use of variables!
//***

public class Test3
{
 public static void main (String[] args)
 {
 int a;
 int b;
 int c;
 b = 3; // these
 c = 5; // are
 a = b + c; // assignment statements
 System.out.println ("The answer is " + a);
 }
}

13

Assignment Statements
■ Assignment statement assigns value to variable

■ sometimes say binds value to variable
■ Assignment statement is

■ identifier
■ followed by assignment operator (=)
■ followed by expression
■ followed by semicolon (;)

■ Note that = is no longer a test for equality!

 b = 3;
 c = 8;
 a = b + c;
 weekly_pay = pay_rate * hours_worked;

14

Assignment Statements
■ Java first computes value on right side
■ Then assigns value to variable given on left side

 x = 4 + 7; // what’s in x?

■ Old value will be overwritten if variable was assigned before

 x = 2 + 1; // what’s in x now?

15

Assignment Statements
■ Here’s an occasional point of confusion:

 a = 7; // what’s in a?
 b = a; // what’s in b?
 // what’s in a now???

16

Assignment Statements
■ Here’s an occasional point of confusion:

■ Find out! Experiments are easy to do in CS

 a = 7; // what’s in a?
 b = a; // what’s in b?
 // what’s in a now???
System.out.println(“a is “ + a + “b is “ +b);

17

Assignment Statements
■ Here’s an occasional point of confusion:

■ Variable values on left of = are clobbered
■ Variable values on right of = are unchanged

■ copy of value assigned to a also assigned to b
■ but that doesn’t change value assigned to a

 a = 7; // what’s in a?
 b = a; // what’s in b?
 // what’s in a now???
System.out.println(“a is “ + a + “b is “ +b);

18

Assignment Statements
■ Here’s an occasional point of confusion:

■ Memory locations a and b are distinct
■ copy of value assigned to a also assigned to b
■ changing a later does not affect previous copy

■ more later

 a = 7; // what’s in a?
 b = a; // what’s in b?
 // what’s in a now???
 System.out.println(“a is “ + a + “b is “ +b);
 a = 8;
 System.out.println(“a is “ + a + “b is “ +b);

19

Variable Declaration and Assignment
■ variable declaration is instruction to compiler

■ reserve block of main memory large enough to store
data type specified in declaration

■ variable name is specified by identifier
■ syntax:

■ typeName variableName;
■ typeName variableName = value;

■ can declare and assign in one step

20

Expressions
■ expression is combination of

■ one or more operators and operands
■ operator examples: +, *, /, ...
■ operand examples: numbers, variables, ...
■ usually performs a calculation

■ don’t have to be arithmetic but often are
■ examples

 3
 7 + 2
 7 + 2 * 5
 (7 + 2) * 5

21

Operator Precedence
■ What does this expression evaluate to?
 7 + 2 * 5

22

Operator Precedence
■ What does this expression evaluate to?
 7 + 2 * 5
■ Multiplication has higher operator precedence than

addition (just like in algebra)
precedence operator operation

1 higher + - unary plus and minus
2 * / % multiply, divide, remainder
3 lower + - add, subtract

23

Operator Precedence
■ What does this expression evaluate to?
 7 + 2 * 5
■ Multiplication has higher operator precedence than

addition (just like in algebra)

■ Use parentheses to change precedence order or just
clarify intent

 (7 + 2) * 5 7 + (2 * 5)

precedence operator operation

1 higher + - unary plus and minus
2 * / % multiply, divide, remainder
3 lower + - add, subtract

24

Converting Between Types
■ Which of these are legal?

■ int shoes = 2;
■ double socks = 1.75;
■ double socks = 1;
■ int shoes = 1.5;

25

Converting Between Types
■ Which of these are legal?

■ int shoes = 2;
■ double socks = 1.75;
■ double socks = 1;
■ int shoes = 1.5;

■ Integers are subset of reals
■ but reals are not subset of integers

26

Casting
■ Casting: convert from one type to another with

information loss
■ Converting from real to integer

■ int shoes = (int) 1.5;
■ Truncation: fractional part thrown away

■ int shoes = (int) 1.75;
■ int shoes = (int) 1.25;

■ Rounding: must be done explicitly
■ shoes = Math.round(1.99);

27

Converting Between Types

■ What’s wrong?

//***
// Feet.java Author: Tamara
// What type of things can be put on feet?
//***
public class Feet
{
 public static void main (String[] args)
 {
 int shoes = 2;
 int socks = (int) 1.75;
 System.out.println("shoes = " + shoes + " socks = " +
socks);
 int toes = Math.round(1.99);
 System.out.println("toes = " + toes);
 }
}

28

Data Type Sizes

■ is there more to life than 4-byte ints or 8-byte
doubles?

approx 1.7E308
 (15 sig. digits)

approx -1.7E308
(15 sig. digits)

8 bytesdouble

2,147,483,647-2,147,483,6484 bytesint

MaxMinSizeType

29

Primitive Data Types: Numbers

■ Primary primitives are int and double
■ three other integer types
■ one other real type
■ range of choices for storage capacity

approx 1.7E308
 (15 sig. digits)

approx -1.7E308
(15 sig. digits)

8 bytesdouble

approx 3.4E38 (7 sig.digits)approx -3.4E38 (7 sig.digits)4 bytesfloat

9,223,372,036,854,775,807-9,223,372,036,854,775,8088 byteslong

2,147,483,647-2,147,483,6484 bytesint

32,767-32,7682 bytesshort

127-1281 bytebyte

MaxMinSizeType

30

Using Long Integers
//***
// Feet2.java Author: Tamara
// What type of things can be put on feet?
//***
public class Feet2
{
 public static void main (String[] args)
 {
 int shoes = 2;
 int socks = (int) 1.75;
 System.out.println("shoes = " + shoes + " socks = " +
socks);
 long toes = Math.round(1.99);
 System.out.println("toes = " + toes);
 }
}

31

Or Cast To Int
//***
// Feet3.java Author: Tamara
// What type of things can be put on feet?
//***
public class Feet3
{
 public static void main (String[] args)
 {
 int shoes = 2;
 int socks = (int) 1.75;
 System.out.println("shoes = " + shoes + " socks = " +
socks);
 int toes = (int) Math.round(1.99);
 System.out.println("toes = " + toes);
 }
}

32

Primitive Data Types: Non-numeric
■ Character type

■ named char
■ Java uses the Unicode character set so each char occupies 2

bytes of memory.
■ Boolean type

■ named boolean
■ variables of type boolean have only two valid values

■ true and false
■ often represents whether particular condition is true
■ more generally represents any data that has two states

■ yes/no, on/off

33

What Changes, What Doesn’t?
//***
// Vroom.java Author: Tamara
// Playing with constants
//***
public class Vroom
{
 public static void main (String[] args)
 {
 double lightYears, milesAway;
 lightYears = 4.35; // to Alpha Centauri
 milesAway = lightYears * 186000 *60*60*24*365;
 System.out.println("lightYears: " + lightYears + "
milesAway " + milesAway);
 lightYears = 68; // to Aldebaran
 milesAway = lightYears * 186000 *60*60*24*365;
 System.out.println("lightYears: " + lightYears + "
milesAway " + milesAway);
 }
} 34

Constants
■ Things that do not vary

■ unlike variables
■ will never change

■ Syntax:
■ final typeName variableName;
■ final typeName variableName = value;

■ Constant names in all upper case
■ Java convention, not compiler/syntax requirement

35

Programming With Constants
public static void main (String[] args)
 {
 double lightYears, milesAway;

 final int LIGHTSPEED = 186000;
 final int SECONDS_PER_YEAR = 60*60*24*365;

 lightYears = 4.35; // to Alpha Centauri
 milesAway = lightYears * LIGHTSPEED * SECONDS_PER_YEAR;
 System.out.println("lightYears: " + lightYears + "
miles " + milesAway);

 lightYears = 68; // to Aldebaran
 milesAway = lightYears * LIGHTSPEED * SECONDS_PER_YEAR;
 System.out.println("lightYears: " + lightYears + "
miles " + milesAway);
 }

36

Avoiding Magic Numbers
■ magic numbers: numeric constants directly in code

■ almost always bad idea!
■ hard to understand code
■ hard to make changes
■ typos possible

■ use constants instead

37

Programming With Constants
public static void main (String[] args)
 {
 double lightYears, milesAway;
 final int LIGHTSPEED = 186000;
 final int SECONDS_PER_YEAR = 60*60*24*365;

 final double ALPHACENT_DIST = 4.35; // to AlphaCentauri
 final double ALDEBARAN_DIST = 68; // to Aldebaran

 lightYears = ALPHACENT_DIST;
 milesAway = lightYears * LIGHTSPEED * SECONDS_PER_YEAR;
 System.out.println("lightYears: " + lightYears + "
miles " + milesAway);
 lightYears = ALDEBARAN_DIST;

 milesAway = lightYears * LIGHTSPEED * SECONDS_PER_YEAR;
 System.out.println("lightYears: " + lightYears + "
miles " + milesAway);
 } 38

Reading Next Week
■ Rest of Chap 2

■ 2.3-4, 2.6-2.10
■ Rest of Chap 4

■ 4.3-4.7

