
1

University of British Columbia
CPSC 111, Intro to Computation

2009W2: Jan-Apr 2010
Tamara Munzner

Inheritance III, Graphical User Interfaces

Lecture 35, Wed Apr 14 2010

http://www.cs.ubc.ca/~tmm/courses/111-10

borrowing from slides by Kurt Eiselt

2

Office Hours
■ reminder: TA office hours at DLC end Thu

afternoon
■ labs end this week

■ my office hours for rest of term
■ Monday 4/19 4pm
■ by appointment through 4/23

■ send me email to book
■ not Mon 4/26

■ I'm out of town 4/24-4/27
■ will check email at least once/day, but not

online all the time

3

Assignments

■ Assignment 3 due Fri Apr 16, 5pm
■ electronic handin only
■ writeup hardcopy handed out mentioned

hardcopy, ignore that! (fixed in online version)
■ Assignment 2 grading reports should arrive

by email very soon
■ ugrad account email: check it or forward it to

your real account
■ A3 grading report target is Apr 26, so you

have a few days to look through before final

4

Midterm

■ deadline for having TAs check corrected
midterms is the Thu lab tomorrow
■ then solutions released

■ Vista currently has unscaled, difference mark
as Assignment 2 Correction
■ after it's finalized, we'll add two more columns

■ scaled difference
■ scaled combined

5

Weekly Questions

■ you'll get full credit if you handed in questions
for 10 (out of the 12 possible) weeks
■ last one due today
■ reminder: weeklies all together count for 2%

of your course grade

6

Final Exam
■ final review session will be Mon Apr 24

■ 10am-12pm, room WOOD 4
■ given by grad TA Primal Wijesekera

■ final is Wed Apr 28, 3:30-6:30 pm, FSC 1005
■ exam will be 2.5 hours

■ 3 hour slot reserved in case of fire alarms, etc
■ closed book/notes/laptops/calculators
■ material covered

■ whole course, but significant emphasis on
later topics not covered in previous exams

■ exception: GUIs will not be covered

7

Material Covered
■ midterm 1

■ primitives, constants, strings, classes, objects
■ midterm 2

■ all of the above plus/especially:
■ conditionals, loops, arrays, sorting

■ final
■ all of the above plus/especially:
■ interfaces, inheritance
■ more on classes, objects

■ scope, static fields/methods, control flow
■ pass by reference vs. pass by value

8

Reading Summary
■ http://www.cs.ubc.ca/~tmm/courses/111-10/#reading

9

Practice Exams

■ One practice final (without solutions) up on
WebCT/Vista

■ Another practice exam available under
Challenge link from course page
http://www.ugrad.cs.ubc.ca/~cs111/

10

Exam Philosophy
■ my exams tend to be hard and long
■ thus, I almost always end up scaling marks

■ difficult exams can be scaled
■ too-easy exams cannot distinguish those who know

material from those who don't

■ how to handle exams with deliberate time pressure
■ do not panic if you think you won't finish
■ do be strategic about how to spend your time

■ I recommend you look through entire exam before you
jump into writing answers

■ spend a few minutes up front to plan best approach for
your strengths

11

How To Prepare
■ Read all the required reading

■ Review lecture notes and code written in
class
■ available from web

http://www.cs.ubc.ca/~tmm/courses/111-10/

■ Practice, practice, practice -- write programs!!
■ especially using inheritance and abstract

classes

12

Programming Practice

■ Two kinds of practice, both are important!

■ Using computer, open book, Internet,
discussing approach with friends, take as long
as you need to fully understand

■ Closed book, write on paper, don't talk to
anybody about the question, time pressure

13

Head First Java by Kathy Sierra and Bert Bates

Read this book, work all the
problems (there are zillions),
and you should have a
better grasp of what's going
on with Java. (I have no
financial interest in this book
or any bookseller.)

Alternate Book
■ If you're not getting it and want to try a different

approach, run to the bookstore (or head to
Amazon.ca or Indigo.ca) and get a copy of...

14

The Coca-Cola Company has founded Vending University. VU has two
kinds of students. The full time students pay $250.00 per credit in tuition
up to a maximum of $3000.00 (12 credits), even if they enroll in more than
12 credits. Tuition for students in the executive program is computed
differently; these students pay a $3000.00 "executive fee" plus $400.00 per
credit, with no ceiling or cap on the total. Each student has a name and is
enrolled for some integer number of credits.

Write an abstract superclass called Student, and write concrete subclasses
called FullTimeStudent and ExecutiveStudent. The method for computing
the tuition should be called computeTuition().

Now do it again, but with an interface called Student instead of an abstract
superclass.

Provide a test program that uses polymorphism to test your classes and
methods.

Practice Problem

15

Recap: Inheritance Class Hierarchy

■ Is base class something that you would
ever want to instantiate itself?

Generic
Vending
Machine

Coke
Machine

Coke
Machine2000

French Fry
Machine

is-a is-a

is-a

Coke
MachineUA

is-a

Pizza
Machine

Beer
Machine

is-a is-a

16

Recap: Abstract Classes
■ Abstract class: not completely implemented

■ serve as place holders in class hierarchy
■ partial description inherited by all descendants

■ Usually contains one or more abstract methods
■ has no definition: specifies method that should be implemented

by subclasses
■ just has header, does not provide actual implementation for

that method
■ Abstract class uses abstract methods to specify what

interface to descendant classes must look like
■ without providing implementation details for methods that

make up interface
■ descendent classes supply additional information so that

instantiation is meaningful

17

Recap: Interfaces vs. Abstract Classes
■ Use abstract class with inheritance to initiate a

hierarchy of more specialized classes
■ Use interface to say, "I need to be able to call

methods with these signatures in your class."
■ Use an interface for some semblance of multiple

inheritance

from Just Java 2 by Peter van der Linden

18

A (Very) Last Look At Bunnies...

■ interface and inheritance practice!
■ let's make a SortableBunny class that both

■ extends NamedBunny class
■ implements Comparable interface

■ compareTo(Object o)
■ returns int < 0 if this object less than parameter
■ returns 0 if same
■ returns int > 0 if this object greater than parameter

19

Comparing Bunnies

■ how to compare?
■ number of carrots? location?...
■ names - alphabetical order!

■ do we have to implement this from scratch?
■ no! use String compareTo method

20

SortableBunny
public class SortableBunny extends NamedBunny
implements Comparable {
 public SortableBunny(){
 super();
 }
 public SortableBunny(int x, int y, int carrots, String name){
 super(x,y,carrots,name);
 }

 /* compare by name alphabetical order */
 public int compareTo(Object other){
 return this.getName().compareTo(
 ((SortableBunny)other).getName()
);
 }
}

21

BunnySorter
public static void main(String[] args){
 SortableBunny[] bunnies = new SortableBunny[4];
 SortableBunny peter = new SortableBunny(3,6,1,"Peter");
 SortableBunny emily = new SortableBunny(3,4,5,"Emily");
 SortableBunny darlene = new SortableBunny(3,6,1,"Darlene");
 SortableBunny aaron = new SortableBunny(3,4,5,"Aaron");

 bunnies[0] = peter;
 bunnies[1] = emily;
 bunnies[2] = darlene;
 bunnies[3] = aaron;

 BunnySorter.sort(bunnies);
}

22

BunnySorter
public static void main(String[] args){
 SortableBunny[] bunnies = new SortableBunny[4];
 SortableBunny peter = new SortableBunny(3,6,1,"Peter");
 SortableBunny emily = new SortableBunny(3,4,5,"Emily");
 SortableBunny darlene = new SortableBunny(3,6,1,"Darlene");
 SortableBunny aaron = new SortableBunny(3,4,5,"Aaron");

 bunnies[0] = peter;
 bunnies[1] = emily;
 bunnies[2] = darlene;
 bunnies[3] = aaron;

 BunnySorter.sort(bunnies);

 darlene.compareTo("UhOhNotABunny");
}

■ crashes when we pass in String!

23

SafeSorter
public static void main(String[] args){
 SafeBunny[] bunnies = new SafeBunny[4];
 SafeBunny peter = new SafeBunny(3,6,1,"Peter");
 SafeBunny emily = new SafeBunny(3,4,5,"Emily");
 SafeBunny darlene = new SafeBunny(3,6,1,"Darlene");
 SafeBunny aaron = new SafeBunny(3,4,5,"Aaron");

 bunnies[0] = peter;
 bunnies[1] = emily;
 bunnies[2] = darlene;
 bunnies[3] = aaron;

 SafeSorter.sort(bunnies);

 darlene.compareTo("UhOhNotABunny");
}

■ no crashes. whew....

24

SafeBunny

 /* compare by name alphabetical order */
 /* check if it's the right type before call getName method! */
 public int compareTo(Object other)
 {
 if (other instanceof SafeBunny) {
 return this.getName().compareTo(
 ((SafeBunny)other).getName()
);
 } else {
 return 0;
 }
 }

■ solution: check type of object dynamically
■ before we call bunny-specific method

25

Checking Type Dynamically

■ A instanceof B
■ checks at execution time
■ instanceof is a reserved word
■ A is object
■ B is specific class name

26

A Final Reminder (for the Final)
■ designing classes vs. using classes

■ all of our code starts with public class Foo
■ designing classes

■ you fill in fields, method
■ using classes

■ tester/driver, with main method
■ examples

■ design: SortableBunny implements Comparable
interface

■ use: Sorter.java code uses Integer, Double, String,
SortableBunny classes and Comparable interface

27

Evaluations - Right Now
■ official TA evaluations

■ still on paper, not online yet
■ unofficial course evaluations

■ much more specific questions than the official ones
■ I do not look at these until after official ones returned,

long after grades are out
■ need volunteer to collect these

■ bring official ones to front desk
■ ask receptionist to put unofficial ones in my box

■ in closed envelope
■ please also fill out official teaching surveys for

instructor (me!) at the CoursEval website
https://eval.olt.ubc.ca/science

28

Life After 111: What Next?

■ two threads in CS coursework
■ continuing with programming

■ 211: Intro to Software Development
■ your first taste of theory

■ 111: Intro to Computation

■ playing with computers on your own
■ fame, fortune, and joy!

29

Graphical User Interfaces
(as much as we have time for)

30

Reading for GUIs
■ This week reading: 2.11-2.12, 9.5-9.8,10.9-10.10

■ 5.1-5.2, 11.5, 12.2-12.3 (2nd edition)
■ we will only get through some of this material in

lecture today
■ not covered on final
■ but weekly reading question due today

31

Objectives

■ Taste of what's under the hood with graphical
programming
■ note: taste, not mastery!

32

Simple Graphics

This week is all about very simple graphics in Java.
What we'll talk about aren't necessarily fundamental
computing concepts like loops, arrays, inheritance,
and polymorphism, which surface in all sorts of
different computing contexts.

This stuff will be Java-specific and may not translate
well to other programming languages.

33

Simple Graphics

The good news is that you might find graphics more
fascinating than Coke Machines.

The bad news is that Java graphics can become
tedious very quickly.

34

Simple Graphics

To begin with, we need a "canvas" or a "blank sheet
of paper" on which to draw. In Java, this is called a
frame window or just a frame. You don't put your
graphics just anywhere you want...you draw them
inside the frame.

It should come as no surprise that a specific frame
that we draw in will be an object of some class that
serves as a template for frames. Remember, nothing
much happens in Java until we create objects.

35

Making a frame window

Step 1: Construct an object of the JFrame class.

36

Making a frame window
import javax.swing.JFrame; //Swing is a user interface toolkit

public class FrameViewer
{
 public static void main(String[] args)
 {
 JFrame myframe = new JFrame(); // make a new JFrame object

 }
}

37

Making a frame window

Step 1: Construct an object of the JFrame class.

Step 2: Set the size of the frame.

38

Making a frame window
import javax.swing.JFrame;

public class FrameViewer
{
 public static void main(String[] args)
 {
 JFrame myframe = new JFrame(); // make a new JFrame object

 final int F_WIDTH = 300; // 300 pixels wide
 final int F_HEIGHT = 400; // 400 pixels high

 myframe.setSize(F_WIDTH, F_HEIGHT);

 }
}

39

Making a frame window

Step 1: Construct an object of the JFrame class.

Step 2: Set the size of the frame.

Step 3: Set the title of the frame to appear in the title
 bar (title bar will be blank if no title is set).

40

Making a frame window
import javax.swing.JFrame;

public class FrameViewer
{
 public static void main(String[] args)
 {
 JFrame myframe = new JFrame(); // make a new JFrame object

 final int F_WIDTH = 300; // 300 pixels wide
 final int F_HEIGHT = 400; // 400 pixels high

 myframe.setSize(F_WIDTH, F_HEIGHT);
 myframe.setTitle("My Frame"); // this is optional

 }
}

41

Making a frame window

Step 1: Construct an object of the JFrame class.

Step 2: Set the size of the frame.

Step 3: Set the title of the frame to appear in the title
 bar (title bar will be blank if no title is set).

Step 4: Set the default close operation. When the
 user clicks the close button, the program
 stops running.

42

Making a frame window
import javax.swing.JFrame;

public class FrameViewer
{
 public static void main(String[] args)
 {
 JFrame myframe = new JFrame(); // make a new JFrame object

 final int F_WIDTH = 300; // 300 pixels wide
 final int F_HEIGHT = 400; // 400 pixels high

 myframe.setSize(F_WIDTH, F_HEIGHT);
 myframe.setTitle("My Frame"); // this is optional
 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 }
}

43

Making a frame window

Step 1: Construct an object of the JFrame class.

Step 2: Set the size of the frame.

Step 3: Set the title of the frame to appear in the title
 bar (title bar will be blank if no title is set).

Step 4: Set the default close operation. When the
 user clicks the close button, the program
 stops running.

Step 5: Make the frame visible.

44

Making a frame window
import javax.swing.JFrame;

public class FrameViewer
{
 public static void main(String[] args)
 {
 JFrame myframe = new JFrame(); // make a new JFrame object

 final int F_WIDTH = 300; // 300 pixels wide
 final int F_HEIGHT = 400; // 400 pixels high

 myframe.setSize(F_WIDTH, F_HEIGHT);
 myframe.setTitle("My Frame"); // this is optional
 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 myframe.setVisible(true);
 }
}

45

Making a frame window
import javax.swing.JFrame;

public class FrameViewer
{
 public static void main(String[] args)
 {
 JFrame myframe = new JFrame(); // make a new JFrame object

 final int F_WIDTH = 300; // 300 pixels wide
 final int F_HEIGHT = 400; // 400 pixels high

 myframe.setSize(F_WIDTH, F_HEIGHT);
 myframe.setTitle("My Frame"); // this is optional
 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // when it's time to draw something in the frame,
 // we'll do it here

 myframe.setVisible(true);
 }
}

46

Making a frame window
> java FrameViewer

47

Now let's draw something

Wait, hold on. We don't draw anything. We create
component objects (of course) and add them to the
frame we've created.

We make our own component in the Swing user
interface toolkit by extending the blank component
called JComponent to make a RectangleComponent.

The paintComponent() method is inherited from
JComponent, then we override the method with our
own definition that makes a couple of rectangles.

48

Now let's draw something
import java.awt.Graphics; // AWT is the Abstract Windowing Toolkit,
import java.awt.Graphics2D; // an older graphical user interface
import java.awt.Rectangle; // toolkit
import javax.swing.JPanel;
import javax.swing.JComponent;

public class RectangleComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {

 }
}

49

Now let's draw something

The paintComponent() method of an object is called
automatically when the frame that contains it is
displayed for the first time, resized, or redisplayed
after being hidden.

50

Now let's draw something
import java.awt.Graphics; // AWT is the Abstract Windowing Toolkit,
import java.awt.Graphics2D; // an older graphical user interface
import java.awt.Rectangle; // toolkit
import javax.swing.JPanel;
import javax.swing.JComponent;

public class RectangleComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {

 }
}

51

Now let's draw something

The paintComponent() method is passed an object of
type Graphics2D, which extends the Graphics type,
that contains useful information about colour and font
to be used, among other things. Graphics2D
provides more sophisticated methods for drawing too.
But the paintComponent() method expects a
parameter of the older Graphics type, so we use a
cast to convert the object to Graphics2D type to
recover the methods that come with the Graphics2D
class.

52

Now let's draw something
import java.awt.Graphics; // AWT is the Abstract Windowing Toolkit,
import java.awt.Graphics2D; // an older graphical user interface
import java.awt.Rectangle; // toolkit
import javax.swing.JPanel;
import javax.swing.JComponent;

public class RectangleComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Graphics2D g2 = (Graphics2D) g;

 }
}

53

Now let's draw something

Now we draw a box. We give the X- and Y-
coordinates of the upper left hand corner of the box,
along with its width and height in pixels (i.e. picture
elements).

54

Now let's draw something
import java.awt.Graphics; // AWT is the Abstract Windowing Toolkit,
import java.awt.Graphics2D; // an older graphical user interface
import java.awt.Rectangle; // toolkit
import javax.swing.JPanel;
import javax.swing.JComponent;

public class RectangleComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Graphics2D g2 = (Graphics2D) g;

 Rectangle box = new Rectangle(5, 10, 50, 75);
 g2.draw(box);

 }
}

55

Now let's draw something

The translate() method allows the programmer to
start the drawing of the next box at different X- and Y-
coordinates.

56

Now let's draw something
import java.awt.Graphics; // AWT is the Abstract Windowing Toolkit,
import java.awt.Graphics2D; // an older graphical user interface
import java.awt.Rectangle; // toolkit
import javax.swing.JPanel;
import javax.swing.JComponent;

public class RectangleComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Graphics2D g2 = (Graphics2D) g;

 Rectangle box = new Rectangle(5, 10, 50, 75);
 g2.draw(box);

 box.translate(80,100);

 }
}

57

Now let's draw something

Now we can draw the second and final box.

58

Now let's draw something
import java.awt.Graphics; // AWT is the Abstract Windowing Toolkit,
import java.awt.Graphics2D; // an older graphical user interface
import java.awt.Rectangle; // toolkit
import javax.swing.JPanel;
import javax.swing.JComponent;

public class RectangleComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Graphics2D g2 = (Graphics2D) g;

 Rectangle box = new Rectangle(5, 10, 50, 75);
 g2.draw(box);

 box.translate(80,100);

 g2.draw(box);
 }
}

59

Now let's draw something

One more thing: we have to add the rectangle
component to our frame object.

60

Now let's draw something
import javax.swing.JFrame;

public class FrameViewer
{
 public static void main(String[] args)
 {
 JFrame myframe = new JFrame(); // make a new JFrame object

 final int F_WIDTH = 300; // 300 pixels wide
 final int F_HEIGHT = 400; // 400 pixels high

 myframe.setSize(F_WIDTH, F_HEIGHT);
 myframe.setTitle("My Frame"); // this is optional
 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 RectangleComponent component = new RectangleComponent();
 myframe.add(component);

 myframe.setVisible(true);
 }
}

61

Here's what we drew
> java FrameViewer

62

Questions?

63

Graphical user interfaces (GUIs)
The graphical user interface allows us to interact with our
programs through mouse movements, button clicks, key
presses, and so on.

Your Windows or Macintosh operating system provides you
with a GUI so you don't have to remember all sorts of
instructions to type at the command line.

64

Graphical user interfaces (GUIs)
The graphical user interface allows us to interact with our
programs through mouse movements, button clicks, key
presses, and so on.

Your Windows or Macintosh operating system provides you
with a GUI so you don't have to remember all sorts of
instructions to type at the command line.

Here's a GUI you've seen me
use many times.

65

Event handling
How do we make a GUI in Java? We install event listeners.

An event listener is an object that belongs to a class which
you define. The methods in your event listener contain the
instructions to be executed when the events occur.

Any event listener is specific to an event source. For
example, you'd have one kind of event listener to respond to
the click of a button on your mouse, and another to respond
to the press of a key on your keyboard.

When an event occurs, the event source calls the
appropriate methods of all associated event listeners.

66

Event handling
Here comes an example, straight from your book. This
example is a simple program that prints a message when a
button is clicked.

An event listener that responds to button clicks must belong
to a class that implements the ActionListener interface. That
interface, supplied by the Abstract Windowing Toolkit (AWT),
looks like this:

public interface ActionListener
{
 void actionPerformed(ActionEvent event);
}

Java uses the event parameter to pass details about the
event. We don't need to worry about it.

67

Event handling
Here's what our example class that implements the
ActionListener interface looks like:

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

public class ClickListener implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 System.out.println("I was clicked.");
 }
}

The actionPerformed() method contains the instructions we
want to be executed when our button is clicked.

68

Event handling
Next we'll see a program that tests our ClickListener class.
It looks very much like the program we wrote earlier.

First we create a frame window object so we have a place to
put the button that we want to click.

69

Event handling
import javax.swing.JFrame;
import javax.swing.JButton;
import java.awt.event.ActionListener;

public class ButtonTester
{
 public static void main(String[] args)
 {
 JFrame myframe = new JFrame();
 final int F_WIDTH = 100;
 final int F_HEIGHT = 60;
 myframe.setSize(F_WIDTH, F_HEIGHT);
 myframe.setTitle("Button Tester");
 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 myframe.setVisible(true);
 }
}

70

Event handling
Next we'll see a program that tests our ClickListener class. It
looks very much like the program we wrote earlier.

First we create a frame window object so we have a place to
put the button that we want to click.

Then we create a button object and add it to the frame, just
like the rectangles before.

71

Event handling
import javax.swing.JFrame;
import javax.swing.JButton;
import java.awt.event.ActionListener;

public class ButtonTester
{
 public static void main(String[] args)
 {
 JFrame myframe = new JFrame();
 final int F_WIDTH = 100;
 final int F_HEIGHT = 60;
 myframe.setSize(F_WIDTH, F_HEIGHT);
 myframe.setTitle("Button Tester");
 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton button = new JButton("Click me!");
 myframe.add(button);

 myframe.setVisible(true);
 }
}

72

Event handling
Next we'll see a program that tests our ClickListener class. It
looks very much like the program we wrote earlier.

First we create a frame window object so we have a place to
put the button that we want to click.

Then we create a button object and add it to the frame, just like
the rectangles before.

Finally we create an event listener object called ClickListener
and attach it to the button we just made.

73

Event handling
import javax.swing.JFrame;
import javax.swing.JButton;
import java.awt.event.ActionListener;

public class ButtonTester
{
 public static void main(String[] args)
 {
 JFrame myframe = new JFrame();
 final int F_WIDTH = 100;
 final int F_HEIGHT = 60;
 myframe.setSize(F_WIDTH, F_HEIGHT);
 myframe.setTitle("Button Tester");
 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton button = new JButton("Click me!");
 myframe.add(button);
 ActionListener listener = new ClickListener();
 button.addActionListener(listener);

 myframe.setVisible(true);
 }
}

74

Event handling
> java ButtonTester

75

Event handling
A button listener class like ClickListener is likely to be
specific to a particular button, so we don't really need it to be
widely accessible. We can put the class definition inside the
method or class that needs it. So we can put this class:

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

public class ClickListener implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 System.out.println("I was clicked.");
 }
}

inside the main method of the ButtonTester class as an inner
class.

76

Event handling
import javax.swing.JFrame;
import javax.swing.JButton;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent; // note this addition

public class ButtonTester2
{
 public static void main(String[] args)
 {
 JFrame myframe = new JFrame();
 final int F_WIDTH = 100;
 final int F_HEIGHT = 60;
 myframe.setSize(F_WIDTH, F_HEIGHT);
 myframe.setTitle("Button Tester");
 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton button = new JButton("Click me!");
 myframe.add(button);

77

Event handling
 class ClickListener implements ActionListener
 {
 public void actionPerformed(ActionEvent event)
 {
 System.out.println("I was clicked.");
 }
 }

 ActionListener listener = new ClickListener();
 button.addActionListener(listener);

 myframe.setVisible(true);
 }
}

