
1

University of British Columbia
CPSC 111, Intro to Computation

2009W2: Jan-Apr 2010
Tamara Munzner

Parameter/Scope Review II, Inheritance

Lecture 33, Fri Apr 9 2010

http://www.cs.ubc.ca/~tmm/courses/111-10

borrowing from slides by Kurt Eiselt

2

News
■ final review session will be Mon Apr 26

10am-12pm, room WOOD 4
■ pick up your midterm after class or in lab

■ also your first midterm if you haven’t yet
■ no more corrections accepted after Thu

afternoon next week, solutions released then
■ cool talk 4-5:30pm today, DMP 110

■ The Funnest Job on Earth: A Presentation of
Techniques and Technologies Used to Create
Pixar's Animated Films (version 2.0)

■ Wayne Wooten, Pixar
3

News II

■ don’t wait until the last minute for A3
■ due one week from today Fri 4/16
■ you get one extra day to finish up after

lectures end
■ but remember there will be no DLC office

hours on Fri 4/16 since classes are over

4

Reading
■ This week is Chap 10 (Interfaces), except 10.8.3

and 10.9-10.11
■ not Chapter 11 (I/O and Error Handling) - typo!!

■ Weekly due today
■ if it’s on Chap 11, you’ll get full credit, since

announcement of typo came late, after Wed lecture

■ Next week reading is 2.11-2.12, 9.5-9.8,10.9-10.10
■ 5.1-5.2, 11.5, 12.2-12.3 (2nd edition)
■ we might not get through all this material in lecture

■ in that case, minimal/no coverage on final
■ weekly reading question still due last class Wed 4/14

5

Recap: Parameter Passing
Consider the following program:
public class ParamTest1
{
 public static void main (String[] args)
 {
1 int number = 4;
2 System.out.println("main: number is " + number);
3 method1(number);
7 System.out.println("main: number is now " + number);
 }

 public static void method1(int x)
 {
4 System.out.println("method1: x is " + x);
5 x = x * x;
6 System.out.println("method1: x is now " + x);
 }
}

What's printed?
main: number is 4
method1: x is 4
method1: x is now 16
main: number is now 4

6

Recap: Parameter Passing
Consider the following program:
public class ParamTest1
{
 public static void main (String[] args)
 {
1 int number = 4;
2 System.out.println("main: number is " + number);
3 method1(number);
7 System.out.println("main: number is now " + number);
 }

 public static void method1(int x)
 {
4 System.out.println("method1: x is " + x);
5 x = x * x;
6 System.out.println("method1: x is now " + x);
 }
}

Because when the value in the int variable number is passed to method1,
what really happens is that a copy of the value (4) in number is assigned to
the parameter x. It's the value in x that's being modified here -- a copy of the
value in number. The original value in number is not affected. 7

Parameter Passing
Will this program behave differently? Why or why not?
public class ParamTest2
{
 public static void main (String[] args)
 {
 int number = 4;
 System.out.println("main: number is " + number);
 method1(number);
 System.out.println("main: number is now " + number);
 }

 public static void method1(int number)
 {
 System.out.println("method1: number is " + number);
 number = number * number;
 System.out.println("method1: number is now " + number);
 }
}

What's printed?

8

Parameter Passing
Will this program behave differently? Why or why not?
public class ParamTest2
{
 public static void main (String[] args)
 {
 int number = 4;
 System.out.println("main: number is " + number);
 method1(number);
 System.out.println("main: number is now " + number);
 }

 public static void method1(int number)
 {
 System.out.println("method1: number is " + number);
 number = number * number;
 System.out.println("method1: number is now " + number);
 }
}

What's printed?
 main: number is 4
method1: number is 4
method1: number is now 16
?????????????????????????

9

Parameter Passing
Will this program behave differently? Why or why not?
public class ParamTest2
{
 public static void main (String[] args)
 {
 int number = 4;
 System.out.println("main: number is " + number);
 method1(number);
 System.out.println("main: number is now " + number);
 }

 public static void method1(int number)
 {
 System.out.println("method1: number is " + number);
 number = number * number;
 System.out.println("method1: number is now " + number);
 }
}

What's printed?
 main: number is 4
method1: number is 4
method1: number is now 16
main: number is now 4

10

Parameter Passing
Will this program behave differently? Why or why not?
public class ParamTest2
{
 public static void main (String[] args)
 {
 int number = 4;
 System.out.println("main: number is " + number);
 method1(number);
 System.out.println("main: number is now " + number);
 }

 public static void method1(int number)
 {
 System.out.println("method1: number is " + number);
 number = number * number;
 System.out.println("method1: number is now " + number);
 }
}

Remember that a parameter declared in a method header has local scope,
just like a variable declared within that method. As far as Java is
concerned, number inside of method1 is unrelated to number outside of
method1. They are not the same variable. 11

Parameter Passing
Now consider this program.
public class Ptest
{
 public static void main(String[] args)
 {
 int[] foo = new int[1];
 foo[0] = 4;
 System.out.println("main: foo is now: " + foo[0]);
 method1(foo);
 System.out.println("main: foo is now: " + foo[0]);
 }

 public static void method1(int[] x)
 {
 System.out.println("method1: x is now: " + x[0]);
 x[0] = x[0] * x[0];
 System.out.println("method1: x is now: " + x[0]);
 }
}
What's printed?

12

Parameter Passing
Now consider this program.
public class Ptest
{
 public static void main(String[] args)
 {
 int[] foo = new int[1];
 foo[0] = 4;
 System.out.println("main: foo is now: " + foo[0]);
 method1(foo);
 System.out.println("main: foo is now: " + foo[0]);
 }

 public static void method1(int[] x)
 {
 System.out.println("method1: x is now: " + x[0]);
 x[0] = x[0] * x[0];
 System.out.println("method1: x is now: " + x[0]);
 }
}
What's printed?

main: foo is now: 4

13

Parameter Passing
Now consider this program.
public class Ptest
{
 public static void main(String[] args)
 {
 int[] foo = new int[1];
 foo[0] = 4;
 System.out.println("main: foo is now: " + foo[0]);
 method1(foo);
 System.out.println("main: foo is now: " + foo[0]);
 }

 public static void method1(int[] x)
 {
 System.out.println("method1: x is now: " + x[0]);
 x[0] = x[0] * x[0];
 System.out.println("method1: x is now: " + x[0]);
 }
}
What's printed?

main: foo is now: 4
method1: x is now: 4

14

Parameter Passing
Now consider this program.
public class Ptest
{
 public static void main(String[] args)
 {
 int[] foo = new int[1];
 foo[0] = 4;
 System.out.println("main: foo is now: " + foo[0]);
 method1(foo);
 System.out.println("main: foo is now: " + foo[0]);
 }

 public static void method1(int[] x)
 {
 System.out.println("method1: x is now: " + x[0]);
 x[0] = x[0] * x[0];
 System.out.println("method1: x is now: " + x[0]);
 }
}
What's printed?

main: foo is now: 4
method1: x is now: 4
method1: x is now: 16

15

Parameter Passing
Now consider this program.
public class Ptest
{
 public static void main(String[] args)
 {
 int[] foo = new int[1];
 foo[0] = 4;
 System.out.println("main: foo is now: " + foo[0]);
 method1(foo);
 System.out.println("main: foo is now: " + foo[0]);
 }

 public static void method1(int[] x)
 {
 System.out.println("method1: x is now: " + x[0]);
 x[0] = x[0] * x[0];
 System.out.println("method1: x is now: " + x[0]);
 }
}
What's printed?

main: foo is now: 4
method1: x is now: 4
method1: x is now: 16
?????????????????????

16

Parameter Passing
Now consider this program.
public class Ptest
{
 public static void main(String[] args)
 {
 int[] foo = new int[1];
 foo[0] = 4;
 System.out.println("main: foo is now: " + foo[0]);
 method1(foo);
 System.out.println("main: foo is now: " + foo[0]);
 }

 public static void method1(int[] x)
 {
 System.out.println("method1: x is now: " + x[0]);
 x[0] = x[0] * x[0];
 System.out.println("method1: x is now: " + x[0]);
 }
}
What's printed?

main: foo is now: 4
method1: x is now: 4
method1: x is now: 16
main: foo is now: 16

17

Parameter Passing
Now consider this program.
public class Ptest
{
 public static void main(String[] args)
 {
 int[] foo = new int[1];
 foo[0] = 4;
 System.out.println("main: foo is now: " + foo[0]);
 method1(foo);
 System.out.println("main: foo is now: " + foo[0]);
 }

 public static void method1(int[] x)
 {
 System.out.println("method1: x is now: " + x[0]);
 x[0] = x[0] * x[0];
 System.out.println("method1: x is now: " + x[0]);
 }
}
Why not 4?

main: foo is now: 4
method1: x is now: 4
method1: x is now: 16
main: foo is now: 16

18

Parameter Passing
Now consider this program.
public class Ptest
{
 public static void main(String[] args)
 {
 int[] foo = new int[1];
 foo[0] = 4;
 System.out.println("main: foo is now: " + foo[0]);
 method1(foo);
 System.out.println("main: foo is now: " + foo[0]);
 }

 public static void method1(int[] x)
 {
 System.out.println("method1: x is now: " + x[0]);
 x[0] = x[0] * x[0];
 System.out.println("method1: x is now: " + x[0]);
 }
}

What's in foo? Is it the int[] array object?

19

Parameter Passing
Now consider this program.
public class Ptest
{
 public static void main(String[] args)
 {
 int[] foo = new int[1];
 foo[0] = 4;
 System.out.println("main: foo is now: " + foo[0]);
 method1(foo);
 System.out.println("main: foo is now: " + foo[0]);
 }

 public static void method1(int[] x)
 {
 System.out.println("method1: x is now: " + x[0]);
 x[0] = x[0] * x[0];
 System.out.println("method1: x is now: " + x[0]);
 }
}

What's in foo? Is it the int[] array object? No, it's the reference, or
pointer, to the object.

20

Parameter Passing
Now consider this program.
public class Ptest
{
 public static void main(String[] args)
 {
 int[] foo = new int[1];
 foo[0] = 4;
 System.out.println("main: foo is now: " + foo[0]);
 method1(foo);
 System.out.println("main: foo is now: " + foo[0]);
 }

 public static void method1(int[] x)
 {
 System.out.println("method1: x is now: " + x[0]);
 x[0] = x[0] * x[0];
 System.out.println("method1: x is now: " + x[0]);
 }
}

What's in foo? Is it the int[] array object? No, it's the reference, or
pointer, to the object. A copy of that reference is passed to method1 and
assigned to x.

21

Parameter Passing
Now consider this program.
public class Ptest
{
 public static void main(String[] args)
 {
 int[] foo = new int[1];
 foo[0] = 4;
 System.out.println("main: foo is now: " + foo[0]);
 method1(foo);
 System.out.println("main: foo is now: " + foo[0]);
 }

 public static void method1(int[] x)
 {
 System.out.println("method1: x is now: " + x[0]);
 x[0] = x[0] * x[0];
 System.out.println("method1: x is now: " + x[0]);
 }
}

What's in foo? Is it the int[] array object? No, it's the reference, or
pointer, to the object. A copy of that reference is passed to method1 and
assigned to x. The reference in foo and the reference in x both point to the
same object. 22

Parameter Passing
Now consider this program.
public class Ptest
{
 public static void main(String[] args)
 {
 int[] foo = new int[1];
 foo[0] = 4;
 System.out.println("main: foo is now: " + foo[0]);
 method1(foo);
 System.out.println("main: foo is now: " + foo[0]);
 }

 public static void method1(int[] x)
 {
 System.out.println("method1: x is now: " + x[0]);
 x[0] = x[0] * x[0];
 System.out.println("method1: x is now: " + x[0]);
 }
}

When the object pointed at by x is updated, it's the same as updating the
object pointed at by foo. We changed the object that was pointed at by
both x and foo.

23

Parameter Passing

■ Passing primitive types (int, double, boolean)
as parameter in Java
■ "pass by value"
■ value in variable is copied
■ copy is passed to method
■ modifying copy of value inside called method

has no effect on original value outside called
method
■ modifying aka mutating

24

Parameter Passing

■ Passing object as parameter in Java
■ "pass by reference"
■ objects could be huge, so do not pass copies

around
■ pass copy of the object reference

■ object reference aka pointer
■ modifying object pointed to by reference

inside calling method does affect object
pointed to by reference outside calling method
■ both references point to same object

25

Parameter Passing Pictures

main

method1

4

object as parameter:
copy of pointer made

x

foo

main

method1

prim as parameter:
copy of value

x

number

4

4

26

Midterm Q4 from 04W2

public void process(int[][] arrA, int[][] arrB)

{

 int row;

 int col;

 int[][] arrC = { { 1, 1, 1 }, { 1, 1, 1 } };

 arrA = arrC;

 for(row = 0; row < arrB.length; row++)

 {

 for(col = 0; col < arrB[row].length; col++
)

 {

 arrB[row][col] = row + col;

 }

 }

}

int[][] dataA = { { 0, 0 }, { 0, 0 } };

int[][] dataB = { { 0, 0 }, { 0, 0 } };

process(dataA, dataB);
00
00

00
00

dataB

dataA

27

Midterm Q4 from 04W2

public void process(int[][] arrA, int[][] arrB)

{

 int row;

 int col;

 int[][] arrC = { { 1, 1, 1 }, { 1, 1, 1 } };

 arrA = arrC;

 for(row = 0; row < arrB.length; row++)

 {

 for(col = 0; col < arrB[row].length; col++
)

 {

 arrB[row][col] = row + col;

 }

 }

}

int[][] dataA = { { 0, 0 }, { 0, 0 } };

int[][] dataB = { { 0, 0 }, { 0, 0 } };

process(dataA, dataB);
00
00

00
00

dataB

dataA

arrA arrB

28

Midterm Q4 from 04W2

public void process(int[][] arrA, int[][] arrB)

{

 int row;

 int col;

 int[][] arrC = { { 1, 1, 1 }, { 1, 1, 1 } };

 arrA = arrC;

 for(row = 0; row < arrB.length; row++)

 {

 for(col = 0; col < arrB[row].length; col++
)

 {

 arrB[row][col] = row + col;

 }

 }

}

int[][] dataA = { { 0, 0 }, { 0, 0 } };

int[][] dataB = { { 0, 0 }, { 0, 0 } };

process(dataA, dataB);
00
00

00
00

dataB

dataA

arrA arrB

11
11

arrC

29

Midterm Q4 from 04W2

public void process(int[][] arrA, int[][] arrB)

{

 int row;

 int col;

 int[][] arrC = { { 1, 1, 1 }, { 1, 1, 1 } };

 arrA = arrC;

 for(row = 0; row < arrB.length; row++)

 {

 for(col = 0; col < arrB[row].length; col++
)

 {

 arrB[row][col] = row + col;

 }

 }

}

int[][] dataA = { { 0, 0 }, { 0, 0 } };

int[][] dataB = { { 0, 0 }, { 0, 0 } };

process(dataA, dataB);
00
00

00
00

dataB

dataA

arrA arrB

11
11

arrC

30

Review: Static Fields/Methods
■ Static fields belong to whole class

■ nonstatic fields belong to instantiated object
■ Static methods can only use static fields

■ nonstatic methods can use either nonstatic or static fields

class: Giraffe

getGiraffeCount()

numGiraffes object: Giraffe1

sayHowTall()

neckLength

object: Giraffe2

sayHowTall()

neckLength

31

Review: Variable Scope

■ Scope of a variable (or constant) is that part
of a program in which value of that variable
can be accessed

32

Variable Scope
public class CokeMachine4
{
 private int numberOfCans;

 public CokeMachine4()
 {
 numberOfCans = 2;
 System.out.println("Adding another machine to your empire");
 }

 public int getNumberOfCans()
 {
 return numberOfCans;
 }

 public void reloadMachine(int loadedCans)
 {
 numberOfCans = loadedCans;
 }

■ numberOfCans variable declared inside class but
not inside particular method
■ scope is entire class: can be accessed from

anywhere in class

33

Variable Scope
public class CokeMachine4
{
 private int numberOfCans;

 public CokeMachine4()
 {
 numberOfCans = 2;
 System.out.println("Adding another machine to your empire");
 }

 public double getVolumeOfCoke()
 {
 double totalLitres = numberOfCans * 0.355;
 return totalLitres;
 }

 public void reloadMachine(int loadedCans)
 {
 numberOfCans = loadedCans;
 }

■ totalLitres declared within a method
■ scope is method: can only be accessed from

within method
■ variable is local data: has local scope 34

Variable Scope
public class CokeMachine4
{
 private int numberOfCans;

 public CokeMachine4()
 {
 numberOfCans = 2;
 System.out.println("Adding another machine to your empire");
 }

 public int getNumberOfCans()
 {
 return numberOfCans;
 }

 public void reloadMachine(int loadedCans)
 {
 numberOfCans = loadedCans;
 }

■ loadedCans is method parameter
■ scope is method: also local scope
■ just like variable declared within parameter
■ accessed only within that method 35

Variable Types
■ Static variables

■ declared within class
■ associated with class, not instance

■ Instance variables
■ declared within class
■ associated with instance
■ accessible throughout object, lifetime of object

■ Local variables
■ declared within method
■ accessible throughout method, lifetime of method

■ Parameters
■ declared in parameter list of method
■ accessible throughout method, lifetime of method

36

Variable Types

class: Giraffe

getGiraffeCount()

int numGiraffes object: Giraffe1

sayHowTall()

int neckLength

yell(String message)

int volume

object: Giraffe2
int neckLength

sayHowTall()

yell(String message)

int volume

■ Static? Instance? Local? Parameters?

37

Questions?

38

Objectives

■ Understanding inheritance
■ and class hierarchies

■ Understanding method overriding
■ and difference with method overloading

■ Understanding when and how to use abstract
classes

39

Vending Science Marches On...

■ CokeMachine2 class had limited functionality
■ buyCoke()

■ what if run out of cans?
■ Let’s build the Next Generation

■ just like old ones, but add new exciting
loadCoke() functionality

■ How do we create

CokeMachine2000

40

public class CokeMachine2 {
 private static int totalMachines = 0;
 private int numberOfCans;

 public CokeMachine2() {
 numberOfCans = 10;
 System.out.println("Adding another machine to your empire with "
 + numberOfCans + " cans of Coke");
 totalMachines++;
 }
 public CokeMachine2(int n) {
 numberOfCans = n;
 System.out.println("Adding another machine to your empire with "
 + numberOfCans + " cans of Coke");
 totalMachines++;
 }
 public static int getTotalMachines() { return totalMachines; }
 public int getNumberOfCans() { return numberOfCans; }
 public void buyCoke() {
 if (numberOfCans > 0) {
 numberOfCans = numberOfCans - 1;
 System.out.println("Have a Coke");
 System.out.print(numberOfCans);
 System.out.println(" cans remaining");
 } else {
 System.out.println("Sold Out");
 }
 }
}

Reminder: CokeMachine2

41

public class CokeMachine2000 {
 private static int totalMachines = 0;
 private int numberOfCans;

 public CokeMachine2000() {
 numberOfCans = 10;
 System.out.println("Adding another machine to your empire with "
 + numberOfCans + " cans of Coke");
 totalMachines++;
 }
 public CokeMachine2000(int n) {
 numberOfCans = n;
 System.out.println("Adding another machine to your empire with "
 + numberOfCans + " cans of Coke");
 totalMachines++;
 }
 public static int getTotalMachines() { return totalMachines; }
 public int getNumberOfCans() { return numberOfCans; }
 public void buyCoke() {
 if (numberOfCans > 0) {
 numberOfCans = numberOfCans - 1;
 System.out.println("Have a Coke");
 System.out.print(numberOfCans);
 System.out.println(" cans remaining");
 } else {
 System.out.println("Sold Out");
 }
 }

One Way: Copy CM2, Change Name, ...

42

 public void loadCoke(int n)
 {
 numberOfCans = numberOfCans + n:
 System.out.println("Adding " + n " " cans to this machine");
 }

}

...Then Add New Method

43

public class SimCoke2000
{
 public static void main (String[] args)
 {
 System.out.println("Coke machine simulator");
 CokeMachine2 cs = new CokeMachine2();
 CokeMachine2 engr = new CokeMachine2(237);
 CokeMachine2000 chan = new CokeMachine2000(1);
 cs.buyCoke();
 engr.buyCoke();
 chan.buyCoke();
 chan.loadCoke(150);
 chan.buyCoke();
 }
}

Update The SimCoke Program

44

> java SimCoke2000
Coke machine simulator
Adding another machine to your empire with 10 cans of Coke
Adding another machine to your empire with 237 cans of Coke
Adding another machine to your empire with 1 cans of Coke
Have a Coke
9 cans remaining
Have a Coke
236 cans remaining
Have a Coke
0 cans remaining
Adding 150 cans to this machine
Have a Coke
149 cans remaining

It Works!

45

...to create a new and improved CokeMachine class from the
old CokeMachine class without copying all the code?

Is There An Easier Way...

46

...to create a new and improved CokeMachine class from the
old CokeMachine class without copying all the code?

No.

Is There An Easier Way...

47

...to create a new and improved CokeMachine class from the
old CokeMachine class without copying all the code?

No. OK, I lied. There is an easier way. I'm just checking to
see if you're awake.

Here's how easy it is. We use the reserved word extends
like this...

Is There An Easier Way...

48

Easier Way (First Pass)

■ Create new class called CokeMachine2000
■ inherits all methods and variables from CokeMachine2

■ mostly true...we'll see some exceptions later
■ can just add new variables and methods

■ Inheritance: process by which new class is derived from existing one
■ fundamental principle of object-oriented programming

public class CokeMachine2000 extends CokeMachine2
{
 public void loadCoke(int n)
 {
 numberOfCans = numberOfCans + n;
 System.out.println("Adding " + n + " cans to this machine");
 }

}

49

Easier Way (First Pass)

■ Variables and methods in CokeMachine2 class definition are
included in the CokeMachine2000 definition
■ even though you can’t see them
■ just because of word extends

public class CokeMachine2000 extends CokeMachine2
{
 public void loadCoke(int n)
 {
 numberOfCans = numberOfCans + n;
 System.out.println("Adding " + n + " cans to this machine");
 }

}

50

public class SimCoke2000
{
 public static void main (String[] args)
 {
 System.out.println("Coke machine simulator");
 CokeMachine2 cs = new CokeMachine2();
 CokeMachine2 engr = new CokeMachine2(237);
 CokeMachine2000 chan = new CokeMachine2000(1);
 cs.buyCoke();
 engr.buyCoke();
 chan.buyCoke();
 chan.loadCoke(150);
 chan.buyCoke();
 }
}

1 error found:
File: SimCoke2000.java [line: 8]
Error: cannot resolve symbol
symbol : constructor CokeMachine2000 (int)
location: class CokeMachine2000

Testing With SimCoke

OOPS! What happened?
51

Easier Way (Second Pass)

■ Subclass (child class) inherits all methods except constructor methods
from superclass (parent class)

■ Using reserved word super in subclass constructor tells Java to call
appropriate constructor method of superclass
■ also makes our intentions with respect to constructors explicit

public class CokeMachine2000 extends CokeMachine2
{
 public CokeMachine2000() {
 super();
 }
 public CokeMachine2000(int n) {
 super(n);
 }
 public void loadCoke(int n)
 {
 numberOfCans = numberOfCans + n;
 System.out.println("Adding " + n + " cans to this machine");
 }
}

52

Testing Second Pass
public class CokeMachine2000 extends CokeMachine2
{
 public CokeMachine2000()
 {
 super();
 }

 public CokeMachine2000(int n)
 {
 super(n);
 }

 public void loadCoke(int n)
 {
 numberOfCans = numberOfCans + n;
 System.out.println("Adding " + n + " cans to this machine");
 }
}

2 errors found:
File: CokeMachine2000.java [line: 15]
Error: numberOfCans has private access in CokeMachine2
File: CokeMachine2000.java [line: 15]
Error: numberOfCans has private access in CokeMachine2

53

Easier Way (Third Pass)

■ Subclass inherits all variables of superclass
■ But private variables cannot be directly accessed, even from

subclass

public class CokeMachine2000 extends CokeMachine2
{
 public CokeMachine2000() {
 super();
 }
 public CokeMachine2000(int n) {
 super(n);
 }
 public void loadCoke(int n)
 {
 numberOfCans = numberOfCans + n;
 System.out.println("Adding " + n + " cans to this machine");
 }
}

public class CokeMachine2
{
 private static int totalMachines = 0;
 private int numberOfCans;
 54

Easier Way (Third Pass)

■ Simple fix: change access modifier to protected in
superclass definition
■ protected variables can be directly accessed from declaring class

and any classes derived from it

public class CokeMachine2000 extends CokeMachine2
{
 public CokeMachine2000() {
 super();
 }
 public CokeMachine2000(int n) {
 super(n);
 }
 public void loadCoke(int n)
 {
 numberOfCans = numberOfCans + n;
 System.out.println("Adding " + n + " cans to this machine");
 }
}

public class CokeMachine2
{
 private static int totalMachines = 0;
 protected int numberOfCans;

 ...

55

public class SimCoke2000
{
 public static void main (String[] args)
 {
 System.out.println("Coke machine simulator");
 CokeMachine2 cs = new CokeMachine2();
 CokeMachine2 engr = new CokeMachine2(237);
 CokeMachine2000 chan = new CokeMachine2000(1);
 cs.buyCoke();
 engr.buyCoke();
 chan.buyCoke();
 chan.loadCoke(150);
 chan.buyCoke();
 }
}

Testing With SimCoke

56

public class SimCoke2000
{
 public static void main (String[] args)
 {
 System.out.println("Coke machine simulator");
 CokeMachine2 cs = new CokeMachine2();
 CokeMachine2 engr = new CokeMachine2(237);
 CokeMachine2000 chan = new CokeMachine2000(1);
 cs.buyCoke();
 engr.buyCoke();
 chan.buyCoke();
 chan.loadCoke(150);
 chan.buyCoke();
 }
}

Testing With SimCoke

> java SimCoke2000
Coke machine simulator
Adding another machine to your empire with 10 cans of Coke
Adding another machine to your empire with 237 cans of Coke
Adding another machine to your empire with 1 cans of Coke
Have a Coke
9 cans remaining
Have a Coke
236 cans remaining
Have a Coke
0 cans remaining
Adding 150 cans to this machine
Have a Coke
149 cans remaining
>

57

Some Coke Machine History

early Coke Machine

• mechanical
• sealed unit, must be reloaded
 at factory
• no protection against vandalism

58

Some Coke Machine History

Coke Machine 2000

• electro-mechanical
• can be reloaded on site
• little protection against vandalism

59

Some Coke Machine History

Coke Machine UA*

• prototype cyberhuman intelligent
 mobile autonomous vending
 machine
• can reload itself in transit
• vandalism? bring it on

* Urban Assault

60

Some Coke Machine History

Coke Machine UA

Assuming that previous generation
CokeMachine simulations have wimpy
vandalize() methods built-in to
model their gutless behavior when
faced with a crowbar-wielding human,
how do we create the UA class with
true vandal deterrence?

61

Method Overriding

■ If child class defines method with same name
and signature as method in parent class
■ say child's version overrides parent's version

in favor of its own

62

Method Overriding
public class CokeMachine2
{
 private static int totalMachines = 0;
 protected int numberOfCans;

 public CokeMachine2()
 {
 numberOfCans = 10;
 System.out.println("Adding another machine to your empire with "
 + numberOfCans + " cans of Coke");
 totalMachines++;
 }

 public CokeMachine2(int n)
 {
 numberOfCans = n;
 System.out.println("Adding another machine to your empire with "
 + numberOfCans + " cans of Coke");
 totalMachines++;
 }

 public static int getTotalMachines()
 {
 return totalMachines;
 } 63

Method Overriding
 public int getNumberOfCans()
 {
 return numberOfCans;
 }

 public void buyCoke()
 {
 if (numberOfCans > 0)
 {
 numberOfCans = numberOfCans - 1;
 System.out.println("Have a Coke");
 System.out.print(numberOfCans);
 System.out.println(" cans remaining");
 }
 else
 {
 System.out.println("Sold Out");
 }
 }

 public void vandalize()
 {
 System.out.println("Please don't hurt me...take all my money");
 }
} 64

Method Overriding
public class CokeMachine2000 extends CokeMachine2
{
 public CokeMachine2000()
 {
 super();
 }

 public CokeMachine2000(int n)
 {
 super(n);
 }

 public void loadCoke(int n)
 {
 numberOfCans = numberOfCans + n;
 System.out.println("loading " + n + " cans");
 }

 public void vandalize() // this overrides the vandalize method from parent
 {
 System.out.println("Stop it! Never mind, here's my money");
 }

}

65

Method Overriding
public class CokeMachineUA extends CokeMachine2000
{
 public CokeMachineUA()
 {
 super();
 }

 public CokeMachineUA(int n)
 {
 super(n);
 }

 public void vandalize() // this overrides the vandalize method from parent
 {
 System.out.println("Eat lead and die, you slimy Pepsi drinker!!");
 }
}

66

Method Overriding
public class SimVend
{
 public static void main (String[] args)
 {
 CokeMachine2[] mymachines = new CokeMachine2[5];
 mymachines[0] = new CokeMachine2();
 mymachines[1] = new CokeMachine2000();
 mymachines[2] = new CokeMachineUA();

 for (int i = 0; i < mymachines.length; i++)
 {
 if (mymachines[i] != null)
 {
 mymachines[i].vandalize();
 }
 }
 }
}

> java SimVend
Adding another machine to your empire with 10 cans of Coke
Adding another machine to your empire with 10 cans of Coke
Adding another machine to your empire with 10 cans of Coke
Please don't hurt me...take all my money
Stop it! Never mind, here's my money.
Eat lead and die, you slimy Pepsi drinker!!

67

Method Overriding

■ If child class defines method with same name
and signature as method in parent class
■ say child's version overrides parent's version

in favor of its own
■ reminder: signature is number, type, and order

of parameters
■ Writing our own toString() method for class

overrides existing, inherited toString()
method
■ Where was it inherited from?

68

Method Overriding

■ Where was it inherited from?
■ All classes that aren't explicitly extended from

a named class are by default extended from
Object class

■ Object class includes a toString() method
■ so... class header

 public class myClass

■ is actually same as
 public class myClass extends Object

69

Overriding Variables

■ You can, but you shouldn't

70

Overriding Variables
■ You can, but you shouldn't
■ Possible for child class to declare variable with

same name as variable inherited from parent class
■ one in child class is called shadow variable
■ confuses everyone!

■ Child class already can gain access to inherited
variable with same name
■ there's no good reason to declare new variable with

the same name

71

Another View of Polymorphism

■ From Just Java 2 by Peter van der Linden:
■ Polymorphism is a complicated name for a

straightforward concept. It merely means
using the same one name to refer to different
methods. "Name reuse" would be a better
term.

■ Polymorphism made possible in Java through
method overloading and method overriding
■ remember method overloading?

72

Method Overloading and Overriding
■ Method overloading: "easy" polymorphism

■ in any class can use same name for several different (but
hopefully related) methods

■ methods must have different signatures so that compiler can tell
which one is intended

■ Method overriding: "complicated“ polymorphism
■ subclass has method with same signature as a method in the

superclass
■ method in derived class overrides method in superclass
■ resolved at execution time, not compilation time

■ some call it true polymorphism

73

A New Wrinkle

■ Expand vending machine
empire to include French fry
machines
■ is a French fry machine a

subclass of Coke Machine?

74

If We Have This Class Hierarchy...

Coke
Machine

Coke
Machine2000

Coke
MachineUA

is-a

is-a

75

...Does This Make Sense?

Coke
Machine

Coke
Machine2000

Coke
MachineUA

French Fry
Machine

is-a is-a

is-a

76

Does This Make More Sense?

Generic
Vending
Machine

Coke
Machine

Coke
Machine2000

French Fry
Machine

is-a is-a

is-a

Coke
MachineUA

is-a

77

Does This Make More Sense?

■ Want generic VendingMachine class
■ don’t actually use to generate objects
■ use as template for specific actual classes

like FrenchFryMachine and CokeMachine

Generic
Vending
Machine

Coke
Machine

Coke
Machine2000

French Fry
Machine

is-a is-a

is-a

Coke
MachineUA

is-a

78

Does This Make More Sense?

■ Want generic VendingMachine class
■ don’t actually use to generate objects
■ use as template for specific actual classes like

FrenchFryMachine and CokeMachine
■ One way: make a VendingMachine interface like last

week
■ Another way...

Generic
Vending
Machine

Coke
Machine

Coke
Machine2000

French Fry
Machine

is-a is-a

is-a

Coke
MachineUA

is-a

79

Abstract Classes
■ Abstract classes serve as place holders in class hierarchy
■ Abstract class typically used as partial description inherited

by all its descendants
■ Description insufficient to be useful by itself

■ cannot instantiated if defined properly
■ Descendent classes supply additional information so that

instantiation is meaningful
■ abstract class is generic concept in class hierarchy
■ class becomes abstract by including the abstract modifier in

class header

80

Abstract Classes
public abstract class GenericVendingMachine
{
 private int numberOfItems;
 private double cashIn;

 public GenericVendingMachine()
 {
 numberOfItems = 0;
 }

 public boolean vendItem()
 {
 boolean result;
 if (numberOfItems > 0)
 {
 numberOfItems--;
 result = true;
 }
 else
 {
 result = false;
 }
 return result;
 }

81

Abstract Classes
 public void loadItems(int n)
 {
 numberOfItems = n;
 }

 public int getNumberOfItems()
 {
 return numberOfItems;
 }

}

82

Abstract Classes
public class CokeMachine3 extends VendingMachine
{
 public CokeMachine3()
 {
 super();
 }

 public CokeMachine3(int n)
 {
 super();
 this.loadItems(n);
 }

 public void buyCoke()
 {
 if (this.vendItem())
 {
 System.out.println("Have a nice frosty Coca-Cola!");
 System.out.println(this.getNumberOfItems() + " cans of Coke remaining");
 }
 else
 {
 System.out.println("Sorry, sold out");
 }
 }

83

Abstract Classes
 public void loadCoke(int n)
 {
 this.loadItems(this.getNumberOfItems() + n);
 System.out.println("Adding " + n +
 " ice cold cans of Coke to this machine");
 }
}

